These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35187273)

  • 1. Controlling Droplet Impact Velocity and Droplet Volume: Key Factors to Achieving High Cell Viability in Sub-Nanoliter Droplet-based Bioprinting.
    Ng WL; Huang X; Shkolnikov V; Goh GL; Suntornnond R; Yeong WY
    Int J Bioprint; 2022; 8(1):424. PubMed ID: 35187273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system.
    Snyder J; Son AR; Hamid Q; Wu H; Sun W
    Biofabrication; 2016 Jan; 8(1):015002. PubMed ID: 26759993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of living cells on the bioink printability during laser printing.
    Zhang Z; Xu C; Xiong R; Chrisey DB; Huang Y
    Biomicrofluidics; 2017 May; 11(3):034120. PubMed ID: 28670353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyvinylpyrrolidone-Based Bio-Ink Improves Cell Viability and Homogeneity during Drop-On-Demand Printing.
    Ng WL; Yeong WY; Naing MW
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding droplet jetting on varying substrate for biological applications.
    Lee JM; Huang X; Goh GL; Tran T; Yeong WY
    Int J Bioprint; 2023; 9(5):758. PubMed ID: 37457927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametric Study of Jet/Droplet Formation Process during LIFT Printing of Living Cell-Laden Bioink.
    Kryou C; Theodorakos I; Karakaidos P; Klinakis A; Hatziapostolou A; Zergioti I
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Resolution and Fidelity of Droplet-Based Bioprinting by Upward Ejection.
    Ji Y; Yang Q; Huang G; Shen M; Jian Z; Thoraval MJ; Lian Q; Zhang X; Xu F
    ACS Biomater Sci Eng; 2019 Aug; 5(8):4112-4121. PubMed ID: 33448812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel 3D Bioprinter Using Direct-Volumetric Drop-On-Demand Technology for Fabricating Micro-Tissues and Drug-Delivery.
    Grottkau BE; Hui Z; Pang Y
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32423161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair.
    Hamid OA; Eltaher HM; Sottile V; Yang J
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The acoustic droplet printing of functional tumor microenvironments.
    Chen K; Jiang E; Wei X; Xia Y; Wu Z; Gong Z; Shang Z; Guo S
    Lab Chip; 2021 Apr; 21(8):1604-1612. PubMed ID: 33683268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of gelatin as an effective energy absorbing layer for laser bioprinting.
    Xiong R; Zhang Z; Chai W; Chrisey DB; Huang Y
    Biofabrication; 2017 Jun; 9(2):024103. PubMed ID: 28597844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Resolved Imaging Study of Jetting Dynamics during Laser Printing of Viscoelastic Alginate Solutions.
    Zhang Z; Xiong R; Mei R; Huang Y; Chrisey DB
    Langmuir; 2015 Jun; 31(23):6447-56. PubMed ID: 26011320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks.
    Adhikari J; Roy A; Das A; Ghosh M; Thomas S; Sinha A; Kim J; Saha P
    Macromol Biosci; 2021 Jan; 21(1):e2000179. PubMed ID: 33017096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation.
    Dudman JPR; Ferreira AM; Gentile P; Wang X; Ribeiro RDC; Benning M; Dalgarno KW
    Biofabrication; 2020 Aug; 12(4):045024. PubMed ID: 32629440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes.
    Xu C; Chai W; Huang Y; Markwald RR
    Biotechnol Bioeng; 2012 Dec; 109(12):3152-60. PubMed ID: 22767299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biofabrication: new approaches for tissue regeneration].
    Horch RE; Weigand A; Wajant H; Groll J; Boccaccini AR; Arkudas A
    Handchir Mikrochir Plast Chir; 2018 Apr; 50(2):93-100. PubMed ID: 29378379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminometric sub-nanoliter droplet-to-droplet array (LUMDA) and its application to drug screening by phase I metabolism enzymes.
    Arrabito G; Galati C; Castellano S; Pignataro B
    Lab Chip; 2013 Jan; 13(1):68-72. PubMed ID: 23132304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.