BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 35187276)

  • 1. Static Compressive Behavior and Material Failure Mechanism of Trabecular Tantalum Scaffolds Fabricated by Laser Powder Bed Fusion-based Additive Manufacturing.
    Yang J; Gao H; Zhang D; Jin X; Zhang F; Zhang S; Chen H; Li X
    Int J Bioprint; 2022; 8(1):438. PubMed ID: 35187276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Static Compressive Behavior and Failure Mechanism of Tantalum Scaffolds with Optimized Periodic Lattice Fabricated by Laser-Based Additive Manufacturing.
    Gao H; Yang J; Jin X; Zhang D; Zhang S; Zhang F; Chen H
    3D Print Addit Manuf; 2023 Oct; 10(5):887-904. PubMed ID: 37886405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing.
    Jiao J; Hong Q; Zhang D; Wang M; Tang H; Yang J; Qu X; Yue B
    Front Bioeng Biotechnol; 2023; 11():1117954. PubMed ID: 36777251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.
    Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J
    J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.
    Eshraghi S; Das S
    Acta Biomater; 2012 Aug; 8(8):3138-43. PubMed ID: 22522129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue behaviour and biocompatibility of additively manufactured bioactive tantalum graded lattice structures for load-bearing orthopaedic applications.
    Chen W; Yang J; Kong H; Helou M; Zhang D; Zhao J; Jia W; Liu Q; He P; Li X
    Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112461. PubMed ID: 34702536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Validation and Evaluation of the Bending Properties of Additively Manufactured Metallic Cellular Scaffold Structures for Bone Tissue Engineering.
    Al-Barqawi MO; Church B; Thevamaran M; Thoma DJ; Rahman A
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds.
    Shimko DA; Shimko VF; Sander EA; Dickson KF; Nauman EA
    J Biomed Mater Res B Appl Biomater; 2005 May; 73(2):315-24. PubMed ID: 15736288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Validation of Additively Manufactured Metallic Cellular Scaffold Structures for Bone Tissue Engineering.
    Al-Barqawi MO; Church B; Thevamaran M; Thoma DJ; Rahman A
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Unit Cell Type and Pore Size on Porosity and Mechanical Behavior of Additively Manufactured Ti6Al4V Scaffolds.
    Zaharin HA; Abdul Rani AM; Azam FI; Ginta TL; Sallih N; Ahmad A; Yunus NA; Zulkifli TZA
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30487419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Morphological Deviation in Additive Manufacturing of Porous Ti6Al4V Scaffold: A Design Consideration.
    Naghavi SA; Wang H; Varma SN; Tamaddon M; Marghoub A; Galbraith R; Galbraith J; Moazen M; Hua J; Xu W; Liu C
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties, in vitro biodegradable behavior, biocompatibility and osteogenic ability of additively manufactured Zn-0.8Li-0.1Mg alloy scaffolds.
    Liu A; Lu Y; Dai J; Wen P; Xia D; Zheng Y
    Biomater Adv; 2023 Oct; 153():213571. PubMed ID: 37562158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimize the pore size-pore distribution-pore geometry-porosity of 3D-printed porous tantalum to obtain optimal critical bone defect repair capability.
    Wang X; Zhang D; Peng H; Yang J; Li Y; Xu J
    Biomater Adv; 2023 Nov; 154():213638. PubMed ID: 37812984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure, mechanical properties, corrosion resistance and cytocompatibility of WE43 Mg alloy scaffolds fabricated by laser powder bed fusion for biomedical applications.
    Li M; Benn F; Derra T; Kröger N; Zinser M; Smeets R; Molina-Aldareguia JM; Kopp A; LLorca J
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111623. PubMed ID: 33321665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanical aspect of additive manufactured polyether-ether-ketone scaffold for repair of large bone defects.
    Naghavi SA; Sun C; Hejazi M; Tamaddon M; Zheng J; Wang L; Zhang C; Varma SN; Li D; Moazen M; Wang L; Liu C
    Biomater Transl; 2022; 3(2):142-151. PubMed ID: 36105563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Porous Tantalum with Low Elastic Modulus and Tunable Pore Size for Bone Repair.
    Liang D; Zhong C; Jiang F; Liao J; Ye H; Ren F
    ACS Biomater Sci Eng; 2023 Mar; 9(3):1720-1728. PubMed ID: 36780252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, metallurgy, and mechanical properties of a porous tantalum foam.
    Zardiackas LD; Parsell DE; Dillon LD; Mitchell DW; Nunnery LA; Poggie R
    J Biomed Mater Res; 2001; 58(2):180-7. PubMed ID: 11241337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications.
    Li Y; Ding Y; Munir K; Lin J; Brandt M; Atrens A; Xiao Y; Kanwar JR; Wen C
    Acta Biomater; 2019 Mar; 87():273-284. PubMed ID: 30690210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications.
    Lietaert K; Zadpoor AA; Sonnaert M; Schrooten J; Weber L; Mortensen A; Vleugels J
    Acta Biomater; 2020 Jul; 110():289-302. PubMed ID: 32348917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.