These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35187284)

  • 1. Nano-Hydroxyapatite Bone Scaffolds with Different Porous Structures Processed by Digital Light Processing 3D Printing.
    Liang H; Wang Y; Chen S; Liu Y; Liu Z; Bai J
    Int J Bioprint; 2022; 8(1):502. PubMed ID: 35187284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphologies, mechanical and
    Liu K; Zhou Q; Zhang X; Ma L; Xu B; He R
    RSC Adv; 2023 Jul; 13(30):20830-20838. PubMed ID: 37441027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Printing tissue-engineered scaffolds made of polycaprolactone and nano-hydroxyapatite with mechanical properties appropriate for trabecular bone substitutes.
    Yazdanpanah Z; Sharma NK; Raquin A; Cooper DML; Chen X; Johnston JD
    Biomed Eng Online; 2023 Jul; 22(1):73. PubMed ID: 37474951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration.
    Schmidleithner C; Malferrari S; Palgrave R; Bomze D; Schwentenwein M; Kalaskar DM
    Biomed Mater; 2019 Jun; 14(4):045018. PubMed ID: 31170697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Osteogenesis effect of dynamic mechanical loading on MC3T3-E1 cells in three-dimensional printing biomimetic composite scaffolds].
    Song X; Li H; Li R; Yuan Q; Liu Y; Cheng W; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):448-456. PubMed ID: 29806303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of biomimicking radially graded scaffolds
    Wang Y; Chen S; Liang H; Bai J; Wang M
    J Mater Chem B; 2023 Oct; 11(41):9961-9974. PubMed ID: 37818766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of structural parameters of 3D-printed triply periodic minimal surface gyroid porous scaffolds on compression performance, cell response, and bone regeneration.
    Wang Z; Liao B; Liu Y; Liao Y; Zhou Y; Li W
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35337. PubMed ID: 37795764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures.
    Lim HK; Hong SJ; Byeon SJ; Chung SM; On SW; Yang BE; Lee JH; Byun SH
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32971749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DLP Fabrication of Zirconia Scaffolds Coated with HA/β-TCP Layer: Role of Scaffold Architecture on Mechanical and Biological Properties.
    Coppola B; Montanaro L; Palmero P
    J Funct Biomater; 2022 Sep; 13(3):. PubMed ID: 36135583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-element processed pyritum mixed to β-tricalcium phosphate to obtain a 3D-printed porous scaffold: An option for treatment of bone defects.
    Wang D; Hou J; Xia C; Wei C; Zhu Y; Qian W; Qi S; Wu Y; Shi Y; Qin K; Wu L; Yin F; Chen Z; Li W
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112326. PubMed ID: 34474877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical and osteointegration study of 3D-printed porous PEEK hydroxyapatite-coated scaffolds.
    Wu C; Zeng B; Shen D; Deng J; Zhong L; Hu H; Wang X; Li H; Xu L; Deng Y
    J Biomater Sci Polym Ed; 2023 Mar; 34(4):435-448. PubMed ID: 36106718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of hybrid 3D printing approach for fabrication of high-strength hydroxyapatite bioscaffold using FDM and DLP techniques.
    Cheng YJ; Wu TH; Tseng YS; Chen WF
    Biofabrication; 2024 Jan; 16(2):. PubMed ID: 38226849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of the mechanical properties and osteogenic activity of 3D-printed polylactic acid porous scaffolds by nano-hydroxyapatite and nano-magnesium oxide.
    Xu D; Xu Z; Cheng L; Gao X; Sun J; Chen L
    Heliyon; 2022 Jun; 8(6):e09748. PubMed ID: 35761932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of BMP-2/PDA-BCP Bioceramic Scaffold by DLP 3D Printing and its Ability for Inducing Continuous Bone Formation.
    Yang Z; Xie L; Zhang B; Zhang G; Huo F; Zhou C; Liang X; Fan Y; Tian W; Tan Y
    Front Bioeng Biotechnol; 2022; 10():854693. PubMed ID: 35464724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility.
    Zheng J; Zhao H; Dong E; Kang J; Liu C; Sun C; Li D; Wang L
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112333. PubMed ID: 34474884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models.
    Li L; Shi J; Zhang K; Yang L; Yu F; Zhu L; Liang H; Wang X; Jiang Q
    J Orthop Translat; 2019 Oct; 19():94-105. PubMed ID: 31844617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.