These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35187314)

  • 1. Experimental Investigation into Flue Gas Water and Waste Heat Recovery Using a Purge Gas Ceramic Membrane Condenser.
    Teng D; Jia X; Yang W; An L; Shen G; Zhang H
    ACS Omega; 2022 Feb; 7(6):4956-4969. PubMed ID: 35187314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Study on a Ceramic Membrane Condenser with Air Medium for Water and Waste Heat Recovery from Flue Gas.
    Teng D; An L; Shen G; Zhang S; Zhang H
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Study on Water Recovery from Flue Gas Using Macroporous Ceramic Membrane.
    Cheng C; Zhang H; Chen H
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance Analysis of the Technology of High-Temperature Boiler Feed Water to Recover the Waste Heat of Mid-Low-Temperature Flue Gas.
    Xu W; Jin Y; Zhu L; Li Z
    ACS Omega; 2021 Oct; 6(40):26318-26328. PubMed ID: 34660991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of flue gas recirculation on the performance of incinerator-waste heat boiler and NOx emission in a 500 t/d waste-to-energy plant.
    Liu J; Luo X; Yao S; Li Q; Wang W
    Waste Manag; 2020 Mar; 105():450-456. PubMed ID: 32135466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Analysis of an Absorption Heat Pump System for Waste Heat and Moisture Cascade Recovery from Flue Gas.
    Li Z; Xue S; Hu D; Teng D; Zhang S; Shen G
    ACS Omega; 2022 Jul; 7(28):24596-24605. PubMed ID: 35874247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coal-Fired Boiler Flue Gas Desulfurization System Based on Slurry Waste Heat Recovery in Severe Cold Areas.
    Zhang C; Zou D; Huang X; Lu W
    Membranes (Basel); 2021 Dec; 12(1):. PubMed ID: 35054573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Thermodynamic Characteristics of the Saturated Flue Gas Waste Heat Recovery to Reduce Turbine Extraction Steam.
    Teng D; Lu G; Chen O; Bi D; Zhang Q; Li L
    ACS Omega; 2023 Dec; 8(48):46205-46217. PubMed ID: 38075806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Emission Concentration and Characteristics of Particulate Matter and Water-Soluble Ions in Exhaust Gas of Typical Combustion Sources with Ultra-Low Emission].
    Hu YQ; Wang Z; Guo JH; Feng YJ; Ding MM; Yan X
    Huan Jing Ke Xue; 2021 May; 42(5):2159-2168. PubMed ID: 33884785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced CFD modelling of air and recycled flue gas staging in a waste wood-fired grate boiler for higher combustion efficiency and greater environmental benefits.
    Rajh B; Yin C; Samec N; Hriberšek M; Kokalj F; Zadravec M
    J Environ Manage; 2018 Jul; 218():200-208. PubMed ID: 29680752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Membrane Distillation and Wet Scrubber for Simultaneous Recovery of Heat and Water from Flue Gas.
    Mohd Yusoff MH; Nyunt EK; Bilad MR; Arahman N; Mulyati S; Rizal S; Nordin NAH; Leam JJ; Khan AL; Jaafar J
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-Benefits of Pollutant Removal, Water, and Heat Recovery from Flue Gas through Phase Transition Enhanced by Corona Discharge.
    Shao L; Wang Y; Zhou C; Yang Z; Gao W; Wu Z; Li L; Yang Y; Yang Y; Zheng C; Gao X
    Environ Sci Technol; 2022 Jun; 56(12):8844-8853. PubMed ID: 35620932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Modulation of S-CO
    Xie L; Yang J
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soot elimination and heat recovery of industrial flue gas by heterogeneous condensation.
    Ma L; Zhao Z; Tian C; Wang H; Liu Y
    Sci Rep; 2020 Feb; 10(1):2929. PubMed ID: 32076057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport Membrane Condenser Heat Exchangers to Break the Water-Energy Nexus-A Critical Review.
    Kim JF; Drioli E
    Membranes (Basel); 2020 Dec; 11(1):. PubMed ID: 33374101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental assessment of an indirect method to measure the post-combustion flue gas flow rate in waste-to-energy plant based on multi-point measurements.
    Bellani G; Lazzarini L; Dal Pozzo A; Moretti S; Zattini M; Cozzani V; Talamelli A
    Waste Manag; 2023 Feb; 157():91-99. PubMed ID: 36527779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innovative use of membrane contactor as condenser for heat recovery in carbon capture.
    Yan S; Zhao S; Wardhaugh L; Feron PH
    Environ Sci Technol; 2015 Feb; 49(4):2532-40. PubMed ID: 25590169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel prototype of integrated anaerobic filter-condenser (ANCO) system for application of waste heat from office building to improve performances of both air conditioner and wastewater treatment system.
    Bouted C; Ratanatamskul C
    J Environ Manage; 2019 Feb; 231():66-72. PubMed ID: 30336344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.
    Hu HW; Tang GH; Niu D
    Sci Rep; 2016 Jun; 6():27274. PubMed ID: 27270997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The oxycoal process with cryogenic oxygen supply.
    Kather A; Scheffknecht G
    Naturwissenschaften; 2009 Sep; 96(9):993-1010. PubMed ID: 19495717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.