These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35187372)

  • 1. Principal Component Analysis of Surface-Enhanced Raman Scattering Spectra Revealing Isomer-Dependent Electron Transport in Spiropyran Molecular Junctions: Implications for Nanoscale Molecular Electronics.
    Kobayashi S; Kaneko S; Tamaki T; Kiguchi M; Tsukagoshi K; Terao J; Nishino T
    ACS Omega; 2022 Feb; 7(6):5578-5583. PubMed ID: 35187372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-Enhanced Raman Scattering in Molecular Junctions.
    Iwane M; Fujii S; Kiguchi M
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28820430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-Enhanced Raman Scattering Stimulated by Strong Metal-Molecule Interactions in a C
    Yasuraoka K; Kaneko S; Kobayashi S; Tsukagoshi K; Nishino T
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51602-51607. PubMed ID: 34695353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular and Electrode-Molecule Bonding in a Single Dimer Junction of Naphthalenethiol as Revealed by Surface-Enhanced Raman Scattering Combined with Transport Measurements.
    Homma K; Kaneko S; Tsukagoshi K; Nishino T
    J Am Chem Soc; 2023 Jul; 145(29):15788-15795. PubMed ID: 37437895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface enhanced Raman scattering of a single molecular junction.
    Matsushita R; Kiguchi M
    Phys Chem Chem Phys; 2015 Sep; 17(33):21254-60. PubMed ID: 25623831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying the molecular adsorption site of a single molecule junction through combined Raman and conductance studies.
    Kaneko S; Montes E; Suzuki S; Fujii S; Nishino T; Tsukagoshi K; Ikeda K; Kano H; Nakamura H; Vázquez H; Kiguchi M
    Chem Sci; 2019 Jul; 10(25):6261-6269. PubMed ID: 31367301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free identification of trace microcystin-LR with surface-enhanced Raman scattering spectra.
    He S; Xie W; Fang S; Zhou D; Djebbi K; Zhang Z; Du J; Du C; Wang D
    Talanta; 2019 Apr; 195():401-406. PubMed ID: 30625561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions.
    El-Khoury PZ; Johnson GE; Novikova IV; Gong Y; Joly AG; Evans JE; Zamkov M; Laskin J; Hess WP
    Faraday Discuss; 2015; 184():339-57. PubMed ID: 26406784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genesis of enhanced Raman bands in SERS spectra of 2-mercaptoimidazole: FTIR, Raman, DFT, and SERS.
    Chandra S; Chowdhury J; Ghosh M; Talapatra GB
    J Phys Chem A; 2012 Nov; 116(45):10934-47. PubMed ID: 23092302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman spectroscopy for the characterization of different anatomical subtypes of oral cavity cancer.
    Amber A; Nawaz H; Bhatti HN; Mushtaq Z
    Photodiagnosis Photodyn Ther; 2023 Jun; 42():103607. PubMed ID: 37220841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on single-molecule bridging metal electrodes: development of new characterization technique and functionalities.
    Kiguchi M
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(9):350-359. PubMed ID: 30416175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-responsive photo- and chemo-electrical single-molecule switches.
    Darwish N; Aragonès AC; Darwish T; Ciampi S; Díez-Pérez I
    Nano Lett; 2014 Dec; 14(12):7064-70. PubMed ID: 25419986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions.
    Kim Y; Bahoosh SG; Sysoiev D; Huhn T; Pauly F; Scheer E
    Beilstein J Nanotechnol; 2017; 8():2606-2614. PubMed ID: 29259875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Connectivity Isomerization on Electron Transport Through Thiophene Heterocyclic Molecular Junction.
    Guo HY; Pei LQ; Cai ZY; Sun N; Zheng JF; Shao Y; Wang YH; Wu DY; Jin S; Zhou XS
    Langmuir; 2024 May; 40(18):9717-9724. PubMed ID: 38712354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trace Detection of Tetrahydrocannabinol in Body Fluid via Surface-Enhanced Raman Scattering and Principal Component Analysis.
    Sivashanmugan K; Squire K; Tan A; Zhao Y; Kraai JA; Rorrer GL; Wang AX
    ACS Sens; 2019 Apr; 4(4):1109-1117. PubMed ID: 30907578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous and rapid detection of polychlorinated phenols in water samples by surface-enhanced Raman spectroscopy combined with principal component analysis.
    Ge K; Li Y; Wu Q; Gu Y
    Anal Bioanal Chem; 2022 Mar; 414(7):2385-2395. PubMed ID: 35006306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations.
    Sarkar S; Chowdhury J; Dutta S; Pal T
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Dec; 169():108-15. PubMed ID: 27344521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Orbital Gating Surface-Enhanced Raman Scattering.
    Guo C; Chen X; Ding SY; Mayer D; Wang Q; Zhao Z; Ni L; Liu H; Lee T; Xu B; Xiang D
    ACS Nano; 2018 Nov; 12(11):11229-11235. PubMed ID: 30335940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.