These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35187535)

  • 21. Conventional and amended bioretention soil media for targeted pollutant treatment: A critical review to guide the state of the practice.
    Tirpak RA; Afrooz AN; Winston RJ; Valenca R; Schiff K; Mohanty SK
    Water Res; 2021 Feb; 189():116648. PubMed ID: 33227609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochar amendment of stormwater bioretention systems for nitrogen and Escherichia coli removal: Effect of hydraulic loading rates and antecedent dry periods.
    Rahman MYA; Nachabe MH; Ergas SJ
    Bioresour Technol; 2020 Aug; 310():123428. PubMed ID: 32361647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing nitrate and phosphorus removal from stormwater in a fold-flow bioretention system with saturated zones.
    Yang R; Zheng-Rong F; Man-Ying M; Xian L
    Water Sci Technol; 2021 Oct; 84(8):2079-2092. PubMed ID: 34695032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review of bioretention components and nutrient removal under different climates-future directions for tropics.
    Goh HW; Lem KS; Azizan NA; Chang CK; Talei A; Leow CS; Zakaria NA
    Environ Sci Pollut Res Int; 2019 May; 26(15):14904-14919. PubMed ID: 30977005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A model for predicting reduction in mobile phosphorus of lake sediment by aluminum drinking water treatment residuals.
    Kuster AC; Huser BJ; Thongdamrongtham S; Patra S; Padungthon S; Kuster AT
    Water Res; 2023 Apr; 232():119677. PubMed ID: 36738559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochar-pyrite bi-layer bioretention system for dissolved nutrient treatment and by-product generation control under various stormwater conditions.
    Kong Z; Song Y; Shao Z; Chai H
    Water Res; 2021 Nov; 206():117737. PubMed ID: 34637973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation.
    Lucke T; Nichols PWB
    Sci Total Environ; 2015 Dec; 536():784-792. PubMed ID: 26254078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorus sorbing materials: sorption dynamics and physicochemical characteristics.
    Leader JW; Dunne EJ; Reddy KR
    J Environ Qual; 2008; 37(1):174-81. PubMed ID: 18178890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A case in subtropical climate city: Assessing the bioretention hydraulic performance on storm in response to poor permeability soil.
    Huang J; Yu Z; Qin Y; Wang L; Huang Y; Huang Y
    J Environ Manage; 2021 Sep; 293():112952. PubMed ID: 34102494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioretention cells under cold climate conditions: Effects of freezing and thawing on water infiltration, soil structure, and nutrient removal.
    Ding B; Rezanezhad F; Gharedaghloo B; Van Cappellen P; Passeport E
    Sci Total Environ; 2019 Feb; 649():749-759. PubMed ID: 30176485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nutrient leaching and copper speciation in compost-amended bioretention systems.
    Chahal MK; Shi Z; Flury M
    Sci Total Environ; 2016 Jun; 556():302-9. PubMed ID: 26977536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple-event study of bioretention for treatment of urban storm water runoff.
    Hsieh CH; Davis AP
    Water Sci Technol; 2005; 51(3-4):177-81. PubMed ID: 15850188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting bioretention pollutant removal efficiency with design features: A data-driven approach.
    Wang R; Zhang X; Li MH
    J Environ Manage; 2019 Jul; 242():403-414. PubMed ID: 31059953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrology and rainfall runoff pollutant removal performance of biochar-amended bioretention facilities based on field-scale experiments in lateritic red soil regions.
    Mai Y; Huang G
    Sci Total Environ; 2021 Mar; 761():143252. PubMed ID: 33183819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochar-based bioretention systems for removal of chemical and microbial pollutants from stormwater: A critical review.
    Biswal BK; Vijayaraghavan K; Tsen-Tieng DL; Balasubramanian R
    J Hazard Mater; 2022 Jan; 422():126886. PubMed ID: 34419842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term field performance of a conventional and modified bioretention system for removing dissolved nitrogen species in stormwater runoff.
    Lopez-Ponnada EV; Lynn TJ; Ergas SJ; Mihelcic JR
    Water Res; 2020 Mar; 170():115336. PubMed ID: 31841771
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water treatment residual: A critical review of its applications on pollutant removal from stormwater runoff and future perspectives.
    Xu D; Lee LY; Lim FY; Lyu Z; Zhu H; Ong SL; Hu J
    J Environ Manage; 2020 Apr; 259():109649. PubMed ID: 32072941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification effects of amended bioretention columns on phosphorus in urban rainfall runoff.
    Li J; Li L; Dong W; Li H
    Water Sci Technol; 2018 Dec; 78(9):1937-1945. PubMed ID: 30566097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reliability analysis of nutrient removal from stormwater runoff with green sorption media under varying influent conditions.
    Jones J; Chang NB; Wanielista MP
    Sci Total Environ; 2015 Jan; 502():434-47. PubMed ID: 25278294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Water Quality and Three-Dimensional Fluorescence of Stormwater Runoff from Lined Bioretention Field Cells].
    Lin XY; Wang SM; Li Q; Xie YC
    Huan Jing Ke Xue; 2018 Oct; 39(10):4539-4546. PubMed ID: 30229601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.