BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35187686)

  • 1. Distributions for time, interspecies and intraspecies extrapolation for deriving occupational exposure limits.
    Dilger M; Schneider K; Drossard C; Ott H; Kaiser E
    J Appl Toxicol; 2022 May; 42(5):898-912. PubMed ID: 35187686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time extrapolation and interspecies extrapolation for locally acting substances in case of limited toxicological data.
    Kalberlah F; Föst U; Schneider K
    Ann Occup Hyg; 2002 Mar; 46(2):175-85. PubMed ID: 12074027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derivation of occupational exposure limits: Differences in methods and protection levels.
    Schneider K; Dilger M; Drossard C; Ott H; Kaiser E
    J Appl Toxicol; 2022 May; 42(5):913-926. PubMed ID: 35188277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicokinetic and toxicodynamic considerations when deriving health-based exposure limits for pharmaceuticals.
    Reichard JF; Maier MA; Naumann BD; Pecquet AM; Pfister T; Sandhu R; Sargent EV; Streeter AJ; Weideman PA
    Regul Toxicol Pharmacol; 2016 Aug; 79 Suppl 1():S67-78. PubMed ID: 27224509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time extrapolation in regulatory risk assessment: The impact of study differences on the extrapolation factors.
    Escher SE; Mangelsdorf I; Hoffmann-Doerr S; Partosch F; Karwath A; Schroeder K; Zapf A; Batke M
    Regul Toxicol Pharmacol; 2020 Apr; 112():104584. PubMed ID: 32006672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deriving a data-based interspecies assessment factor using the NOAEL and the benchmark dose approach.
    Bokkers BG; Slob W
    Crit Rev Toxicol; 2007 Jun; 37(5):355-73. PubMed ID: 17612951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interspecies extrapolation based on the RepDose database--a probabilistic approach.
    Escher SE; Batke M; Hoffmann-Doerr S; Messinger H; Mangelsdorf I
    Toxicol Lett; 2013 Apr; 218(2):159-65. PubMed ID: 23395978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experiencing a probabilistic approach to clarify and disclose uncertainties when setting occupational exposure limits.
    Vernez D; Fraize-Frontier S; Vincent R; Binet S; Rousselle C
    Int J Occup Med Environ Health; 2018 Jul; 31(4):475-489. PubMed ID: 29546881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risk assessment for irritating chemicals - Derivation of extrapolation factors.
    Mangelsdorf I; Schröder K; Escher SE; Kolossa-Gehring M; Debiak M
    Int J Hyg Environ Health; 2021 Mar; 232():113668. PubMed ID: 33333487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of toxicokinetic and toxicodynamic data in risk assessment: an international perspective.
    Gundert-Remy U; Sonich-Mullin C;
    Sci Total Environ; 2002 Apr; 288(1-2):3-11. PubMed ID: 12013545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of ratio distributions based on the NOAEL and the benchmark approach for subchronic-to-chronic extrapolation.
    Bokkers BG; Slob W
    Toxicol Sci; 2005 Jun; 85(2):1033-40. PubMed ID: 15772368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure limits for indoor volatile substances concerning the general population: The role of population-based differences in sensory irritation of the eyes and airways for assessment factors.
    Kleinbeck S; Wolkoff P
    Arch Toxicol; 2024 Mar; 98(3):617-662. PubMed ID: 38243103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory irritation as a basis for setting occupational exposure limits.
    Brüning T; Bartsch R; Bolt HM; Desel H; Drexler H; Gundert-Remy U; Hartwig A; Jäckh R; Leibold E; Pallapies D; Rettenmeier AW; Schlüter G; Stropp G; Sucker K; Triebig G; Westphal G; van Thriel C
    Arch Toxicol; 2014 Oct; 88(10):1855-79. PubMed ID: 25182421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A scoping survey of attitudes towards occupational exposure limits and REACH derived no effect levels for workers among chemical risk managers at Swedish workplaces.
    Schenk L
    Int J Occup Med Environ Health; 2020 Sep; 33(5):611-620. PubMed ID: 32699425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A probabilistic effect assessment model for hazardous substances at the workplace.
    Schneider K; Schuhmacher-Wolz U; Hassauer M; Darschnik S; Elmshäuser E; Mosbach-Schulz O
    Regul Toxicol Pharmacol; 2006 Mar; 44(2):172-81. PubMed ID: 16356615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oral-to-inhalation route extrapolation in occupational health risk assessment: a critical assessment.
    Rennen MA; Bouwman T; Wilschut A; Bessems JG; Heer CD
    Regul Toxicol Pharmacol; 2004 Feb; 39(1):5-11. PubMed ID: 14746775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Scientific Basis of Uncertainty Factors Used in Setting Occupational Exposure Limits.
    Dankovic DA; Naumann BD; Maier A; Dourson ML; Levy LS
    J Occup Environ Hyg; 2015; 12 Suppl 1(sup1):S55-68. PubMed ID: 26097979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of REACH-derived no-effect levels for workers with EU indicative occupational exposure limit values and national limit values in Finland.
    Tynkkynen S; Santonen T; Stockmann-Juvala H
    Ann Occup Hyg; 2015 May; 59(4):401-15. PubMed ID: 25638729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparative study on occupational exposure limits of chemical substances in workplace between GBZ 2.1 in China and ACGIH in USA].
    Li W; Zhang M; Wang D
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2014 Jan; 32(1):1-26. PubMed ID: 24428986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occupational exposure limits: a comparative study.
    Schenk L; Hansson SO; Rudén C; Gilek M
    Regul Toxicol Pharmacol; 2008 Mar; 50(2):261-70. PubMed ID: 18226844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.