BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3518794)

  • 1. Use of binding energy in catalysis analyzed by mutagenesis of the tyrosyl-tRNA synthetase.
    Wells TN; Fersht AR
    Biochemistry; 1986 Apr; 25(8):1881-6. PubMed ID: 3518794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal thermodynamics of position 51 mutants and natural variants of tyrosyl-tRNA synthetase.
    Ho CK; Fersht AR
    Biochemistry; 1986 Apr; 25(8):1891-7. PubMed ID: 3518795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction by site-directed mutagenesis of the transition state for the activation of tyrosine by the tyrosyl-tRNA synthetase: a mobile loop envelopes the transition state in an induced-fit mechanism.
    Fersht AR; Knill-Jones JW; Bedouelle H; Winter G
    Biochemistry; 1988 Mar; 27(5):1581-7. PubMed ID: 3284584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissection of the structure and activity of the tyrosyl-tRNA synthetase by site-directed mutagenesis.
    Fersht AR
    Biochemistry; 1987 Dec; 26(25):8031-7. PubMed ID: 3442641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free energy of hydrolysis of tyrosyl adenylate and its binding to wild-type and engineered mutant tyrosyl-tRNA synthetases.
    Wells TN; Ho CK; Fersht AR
    Biochemistry; 1986 Oct; 25(21):6603-8. PubMed ID: 3466647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of threonine 234 in catalysis of tyrosyl adenylate formation by tyrosyl-tRNA synthetase.
    First EA; Fersht AR
    Biochemistry; 1993 Dec; 32(49):13644-50. PubMed ID: 8257697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protection of an unstable reaction intermediate examined with linear free energy relationships in tyrosyl-tRNA synthetase.
    Wells TN; Fersht AR
    Biochemistry; 1989 Nov; 28(23):9201-9. PubMed ID: 2690955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition-state stabilization in the mechanism of tyrosyl-tRNA synthetase revealed by protein engineering.
    Leatherbarrow RJ; Fersht AR; Winter G
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7840-4. PubMed ID: 3865201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational and kinetic analysis of a mobile loop in tyrosyl-tRNA synthetase.
    First EA; Fersht AR
    Biochemistry; 1993 Dec; 32(49):13658-63. PubMed ID: 8257699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of the transition state for the transfer of tyrosine to tRNA(Tyr) by tyrosyl-tRNA synthetase.
    Xin Y; Li W; First EA
    J Mol Biol; 2000 Oct; 303(2):299-310. PubMed ID: 11023794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of transition-state stabilization by residues histidine-45 and threonine-40 in the tyrosyl-tRNA synthetase.
    Leatherbarrow RJ; Fersht AR
    Biochemistry; 1987 Dec; 26(26):8524-8. PubMed ID: 3126804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the role of the KMSKS loop in the catalytic mechanism of the tyrosyl-tRNA synthetase using multimutant cycles.
    First EA; Fersht AR
    Biochemistry; 1995 Apr; 34(15):5030-43. PubMed ID: 7711024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis as a probe of enzyme structure and catalysis: tyrosyl-tRNA synthetase cysteine-35 to glycine-35 mutation.
    Wilkinson AJ; Fersht AR; Blow DM; Winter G
    Biochemistry; 1983 Jul; 22(15):3581-6. PubMed ID: 6615786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity relationships in engineered proteins: analysis of use of binding energy by linear free energy relationships.
    Fersht AR; Leatherbarrow RJ; Wells TN
    Biochemistry; 1987 Sep; 26(19):6030-8. PubMed ID: 3480005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A large increase in enzyme-substrate affinity by protein engineering.
    Wilkinson AJ; Fersht AR; Blow DM; Carter P; Winter G
    Nature; 1984 Jan 12-18; 307(5947):187-8. PubMed ID: 6690998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlating amino acid conservation with function in tyrosyl-tRNA synthetase.
    Xin Y; Li W; Dwyer DS; First EA
    J Mol Biol; 2000 Oct; 303(2):287-98. PubMed ID: 11023793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlations between kinetic and X-ray analyses of engineered enzymes: crystal structures of mutants Cys----Gly-35 and Tyr----Phe-34 of tyrosyl-tRNA synthetase.
    Fothergill MD; Fersht AR
    Biochemistry; 1991 May; 30(21):5157-64. PubMed ID: 2036381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of binding energy in catalysis: optimization of rate in a multistep reaction.
    Avis JM; Fersht AR
    Biochemistry; 1993 May; 32(20):5321-6. PubMed ID: 8499436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the limits of protein-amino acid side chain recognition with the aminoacyl-tRNA synthetases. Discrimination against phenylalanine by tyrosyl-tRNA synthetases.
    Fersht AR; Shindler JS; Tsui WC
    Biochemistry; 1980 Nov; 19(24):5520-4. PubMed ID: 7006687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis reveals transition-state stabilization as a general catalytic mechanism for aminoacyl-tRNA synthetases.
    Borgford TJ; Gray TE; Brand NJ; Fersht AR
    Biochemistry; 1987 Nov; 26(23):7246-50. PubMed ID: 3427072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.