BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 35188075)

  • 1. Background splicing as a predictor of aberrant splicing in genetic disease.
    D A; Y L; R S; H D; E B; Rm W; I V; L C; N J D
    RNA Biol; 2022; 19(1):256-265. PubMed ID: 35188075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational analysis of splicing errors and mutations in human transcripts.
    Kurmangaliyev YZ; Gelfand MS
    BMC Genomics; 2008 Jan; 9():13. PubMed ID: 18194514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G-->A mutations in introns of the dystrophin gene.
    Habara Y; Takeshima Y; Awano H; Okizuka Y; Zhang Z; Saiki K; Yagi M; Matsuo M
    J Med Genet; 2009 Aug; 46(8):542-7. PubMed ID: 19001018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition.
    Královicová J; Vorechovsky I
    Nucleic Acids Res; 2007; 35(19):6399-413. PubMed ID: 17881373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences.
    Krawczak M; Reiss J; Cooper DN
    Hum Genet; 1992; 90(1-2):41-54. PubMed ID: 1427786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping.
    Divina P; Kvitkovicova A; Buratti E; Vorechovsky I
    Eur J Hum Genet; 2009 Jun; 17(6):759-65. PubMed ID: 19142208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Splicing mutations in inherited retinal diseases.
    Weisschuh N; Buena-Atienza E; Wissinger B
    Prog Retin Eye Res; 2021 Jan; 80():100874. PubMed ID: 32553897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed molecular characterization of a novel IDS exonic mutation associated with multiple pseudoexon activation.
    Grodecká L; Kováčová T; Kramárek M; Seneca S; Stouffs K; De Laet C; Majer F; Kršjaková T; Hujová P; Hrnčířová K; Souček P; Lissens W; Buratti E; Freiberger T
    J Mol Med (Berl); 2017 Mar; 95(3):299-309. PubMed ID: 27837218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing.
    Krawczak M; Thomas NS; Hundrieser B; Mort M; Wittig M; Hampe J; Cooper DN
    Hum Mutat; 2007 Feb; 28(2):150-8. PubMed ID: 17001642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatics and mutations leading to exon skipping.
    Desmet FO; Béroud C
    Methods Mol Biol; 2012; 867():17-35. PubMed ID: 22454052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput analysis revealed mutations' diverging effects on
    Souček P; Réblová K; Kramárek M; Radová L; Grymová T; Hujová P; Kováčová T; Lexa M; Grodecká L; Freiberger T
    RNA Biol; 2019 Oct; 16(10):1364-1376. PubMed ID: 31213135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5' splice site.
    Martínez-Pizarro A; Dembic M; Pérez B; Andresen BS; Desviat LR
    PLoS Genet; 2018 Apr; 14(4):e1007360. PubMed ID: 29684050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptic splice activation but not exon skipping is observed in minigene assays of dystrophin c.9361+1G>A mutation identified by NGS.
    Niba ETE; Nishida A; Tran VK; Vu DC; Matsumoto M; Awano H; Lee T; Takeshima Y; Nishio H; Matsuo M
    J Hum Genet; 2017 Apr; 62(5):531-537. PubMed ID: 28100912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing.
    Keegan NP; Wilton SD; Fletcher S
    Front Genet; 2021; 12():806946. PubMed ID: 35140743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identical G+1 to A mutations in three different introns of the type III procollagen gene (COL3A1) produce different patterns of RNA splicing in three variants of Ehlers-Danlos syndrome. IV. An explanation for exon skipping some mutations and not others.
    Kuivaniemi H; Kontusaari S; Tromp G; Zhao MJ; Sabol C; Prockop DJ
    J Biol Chem; 1990 Jul; 265(20):12067-74. PubMed ID: 2365710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy.
    Gurvich OL; Tuohy TM; Howard MT; Finkel RS; Medne L; Anderson CB; Weiss RB; Wilton SD; Flanigan KM
    Ann Neurol; 2008 Jan; 63(1):81-9. PubMed ID: 18059005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Splicing mutations in human genetic disorders: examples, detection, and confirmation.
    Anna A; Monika G
    J Appl Genet; 2018 Aug; 59(3):253-268. PubMed ID: 29680930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global identification of hnRNP A1 binding sites for SSO-based splicing modulation.
    Bruun GH; Doktor TK; Borch-Jensen J; Masuda A; Krainer AR; Ohno K; Andresen BS
    BMC Biol; 2016 Jul; 14():54. PubMed ID: 27380775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The missing puzzle piece: splicing mutations.
    Lewandowska MA
    Int J Clin Exp Pathol; 2013; 6(12):2675-82. PubMed ID: 24294354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA analysis reveals splicing mutations and loss of expression defects in MLH1 and BRCA1.
    Sharp A; Pichert G; Lucassen A; Eccles D
    Hum Mutat; 2004 Sep; 24(3):272. PubMed ID: 15300854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.