These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35188117)

  • 1. Manual Blot-and-Plunge Freezing of Biological Specimens for Single-Particle Cryogenic Electron Microscopy.
    Nguyen HPM; McGuire KL; Cook BD; Herzik MA
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35188117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning ice thickness using the chameleon for high-quality cryoEM data collection.
    McGuire KL; Cook BD; Narehood SM; Herzik MA
    bioRxiv; 2024 May; ():. PubMed ID: 38746094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Economical, Portable Manual Cryogenic Plunge Freezer for the Preparation of Vitrified Biological Samples for Cryogenic Electron Microscopy.
    Depelteau JS; Koning G; Yang W; Briegel A
    Microsc Microanal; 2020 Jun; 26(3):413-418. PubMed ID: 32284082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specimen Preparation for High-Resolution Cryo-EM.
    Passmore LA; Russo CJ
    Methods Enzymol; 2016; 579():51-86. PubMed ID: 27572723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitrification after multiple rounds of sample application and blotting improves particle density on cryo-electron microscopy grids.
    Snijder J; Borst AJ; Dosey A; Walls AC; Burrell A; Reddy VS; Kollman JM; Veesler D
    J Struct Biol; 2017 Apr; 198(1):38-42. PubMed ID: 28254381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do's and don'ts of cryo-electron microscopy: a primer on sample preparation and high quality data collection for macromolecular 3D reconstruction.
    Cabra V; Samsó M
    J Vis Exp; 2015 Jan; (95):52311. PubMed ID: 25651412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for vitrifying samples for cryoEM.
    Razinkov I; Dandey V; Wei H; Zhang Z; Melnekoff D; Rice WJ; Wigge C; Potter CS; Carragher B
    J Struct Biol; 2016 Aug; 195(2):190-198. PubMed ID: 27288865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM.
    Jain T; Sheehan P; Crum J; Carragher B; Potter CS
    J Struct Biol; 2012 Jul; 179(1):68-75. PubMed ID: 22569522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-energy in-line electron holographic imaging of vitreous ice-embedded small biomolecules using a modified scanning electron microscope.
    Cheung M; Adaniya H; Cassidy C; Yamashita M; Shintake T
    Ultramicroscopy; 2020 Feb; 209():112883. PubMed ID: 31739191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation.
    Ashtiani D; Venugopal H; Belousoff M; Spicer B; Mak J; Neild A; de Marco A
    J Struct Biol; 2018 Aug; 203(2):94-101. PubMed ID: 29630922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Tube to Structure: SPA Cryo-EM Workflow Using Apoferritin as an Example.
    Diebolder CA; Dillard RS; Renault L
    Methods Mol Biol; 2021; 2305():229-256. PubMed ID: 33950393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Monolayer Graphene to Cryo-Electron Microscopy Grids for High-resolution Structure Determination.
    Grassetti AV; May MB; Davis JH
    J Vis Exp; 2023 Nov; (201):. PubMed ID: 38009744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-coupled cryo-plunger for time-resolved cryo-EM.
    Yoder N; Jalali-Yazdi F; Noreng S; Houser A; Baconguis I; Gouaux E
    J Struct Biol; 2020 Dec; 212(3):107624. PubMed ID: 32950604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the freezing and identification of lipid monolayer 2-D arrays for cryoelectron microscopy.
    Taylor DW; Kelly DF; Cheng A; Taylor KA
    J Struct Biol; 2007 Dec; 160(3):305-12. PubMed ID: 17561414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Through-grid wicking enables high-speed cryoEM specimen preparation.
    Tan YZ; Rubinstein JL
    Acta Crystallogr D Struct Biol; 2020 Nov; 76(Pt 11):1092-1103. PubMed ID: 33135680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ice thickness monitoring for cryo-EM grids by interferometry imaging.
    Hohle MM; Lammens K; Gut F; Wang B; Kahler S; Kugler K; Till M; Beckmann R; Hopfner KP; Jung C
    Sci Rep; 2022 Sep; 12(1):15330. PubMed ID: 36097274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM.
    Dickerson JL; Lu PH; Hristov D; Dunin-Borkowski RE; Russo CJ
    Ultramicroscopy; 2022 Jul; 237():113510. PubMed ID: 35367900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein Structural Analysis by Cryogenic Electron Microscopy.
    Hall M; Schexnaydre E; Holmlund C; Carroni M
    Methods Mol Biol; 2023; 2652():439-463. PubMed ID: 37093490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Monolayer Graphene-Coated Grids for Cryoelectron Microscopy.
    Basanta B; Chen W; Pride DE; Lander GC
    J Vis Exp; 2023 Sep; (199):. PubMed ID: 37747197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitrification of cryoelectron microscopy specimens revealed by high-speed photographic imaging.
    Kasas S; Dumas G; Dietler G; Catsicas S; Adrian M
    J Microsc; 2003 Jul; 211(Pt 1):48-53. PubMed ID: 12839550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.