These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35188129)

  • 41. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants.
    Vidugiris GJ; Truckses DM; Markley JL; Royer CA
    Biochemistry; 1996 Mar; 35(12):3857-64. PubMed ID: 8620010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular insights into protein synthesis with proline residues.
    Melnikov S; Mailliot J; Rigger L; Neuner S; Shin BS; Yusupova G; Dever TE; Micura R; Yusupov M
    EMBO Rep; 2016 Dec; 17(12):1776-1784. PubMed ID: 27827794
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single proline residues can dictate the oxidative folding pathways of cysteine-rich peptides.
    Boulègue C; Milbradt AG; Renner C; Moroder L
    J Mol Biol; 2006 May; 358(3):846-56. PubMed ID: 16530224
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proline isomerization in bovine pancreatic ribonuclease A. 2. Folding conditions.
    Bhat R; Wedemeyer WJ; Scheraga HA
    Biochemistry; 2003 May; 42(19):5722-8. PubMed ID: 12741829
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of proline mutations on the unfolding and refolding of human lysozyme: the slow refolding kinetic phase does not result from proline cis-trans isomerization.
    Herning T; Yutani K; Taniyama Y; Kikuchi M
    Biochemistry; 1991 Oct; 30(41):9882-91. PubMed ID: 1911779
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Folding and assembly of lambda Cro repressor dimers are kinetically limited by proline isomerization.
    Satumba WJ; Mossing MC
    Biochemistry; 2002 Dec; 41(48):14216-24. PubMed ID: 12450385
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple roles of prolyl residues in structure and folding.
    Eyles SJ; Gierasch LM
    J Mol Biol; 2000 Aug; 301(3):737-47. PubMed ID: 10966780
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modulation of triple-helical stability and subsequent melanoma cellular responses by single-site substitution of fluoroproline derivatives.
    Malkar NB; Lauer-Fields JL; Borgia JA; Fields GB
    Biochemistry; 2002 May; 41(19):6054-64. PubMed ID: 11994000
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A (4R)- or a (4S)-fluoroproline residue in position Xaa of the (Xaa-Yaa-Gly) collagen repeat severely affects triple-helix formation.
    Barth D; Milbradt AG; Renner C; Moroder L
    Chembiochem; 2004 Jan; 5(1):79-86. PubMed ID: 14695516
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid protein-folding assay using green fluorescent protein.
    Waldo GS; Standish BM; Berendzen J; Terwilliger TC
    Nat Biotechnol; 1999 Jul; 17(7):691-5. PubMed ID: 10404163
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The folding and stability of rhodanese are influenced by the replacement of glutamic acid 17 in the NH2-terminal helix by proline but not by glutamine.
    Luo GX; Horowitz PM
    J Biol Chem; 1993 May; 268(14):10246-51. PubMed ID: 8098037
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crystal structure and refolding properties of the mutant F99S/M153T/V163A of the green fluorescent protein.
    Battistutta R; Negro A; Zanotti G
    Proteins; 2000 Dec; 41(4):429-37. PubMed ID: 11056031
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deletional protein engineering based on stable fold.
    Raghunathan G; Soundrarajan N; Sokalingam S; Yun H; Lee SG
    PLoS One; 2012; 7(12):e51510. PubMed ID: 23240034
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering and characterization of a superfolder green fluorescent protein.
    Pédelacq JD; Cabantous S; Tran T; Terwilliger TC; Waldo GS
    Nat Biotechnol; 2006 Jan; 24(1):79-88. PubMed ID: 16369541
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Azatryptophans as tools to study polarity requirements for folding of green fluorescent protein.
    Hoesl MG; Larregola M; Cui H; Budisa N
    J Pept Sci; 2010 Oct; 16(10):589-95. PubMed ID: 20632254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Variation of the intercalating proline in artificial peptides mimicking the DNA binding and bending IHF protein.
    Scholz S; Liebler EK; Eickmann B; Fritz HJ; Diederichsen U
    Amino Acids; 2012 Jul; 43(1):289-98. PubMed ID: 21922266
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus.
    Pletneva N; Pletnev V; Tikhonova T; Pakhomov AA; Popov V; Martynov VI; Wlodawer A; Dauter Z; Pletnev S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1082-93. PubMed ID: 17881826
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct and continuous assay for prolyl 4-hydroxylase.
    Gorres KL; Raines RT
    Anal Biochem; 2009 Mar; 386(2):181-5. PubMed ID: 19111518
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural role of the proline residues of the beta-hinge region of p13suc1 as revealed by site-directed mutagenesis and fluorescence studies.
    Simeoni F; Masotti L; Neyroz P
    Biochemistry; 2001 Jul; 40(27):8030-42. PubMed ID: 11434772
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proline can have opposite effects on fast and slow protein folding phases.
    Osváth S; Gruebele M
    Biophys J; 2003 Aug; 85(2):1215-22. PubMed ID: 12885665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.