BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 35188156)

  • 21. Surface Plasmon-Photon Coupling in Lanthanide-Doped Nanoparticles.
    Qin X; Carneiro Neto AN; Longo RL; Wu Y; Malta OL; Liu X
    J Phys Chem Lett; 2021 Feb; 12(5):1520-1541. PubMed ID: 33534586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intensifying Upconverted Ultraviolet Emission towards Efficient Reactive Oxygen Species Generation.
    Zhang H; Liu Y; Jin R; Han S; Su Q
    Chem Asian J; 2022 Aug; 17(15):e202200309. PubMed ID: 35485415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies.
    Resch-Genger U; Gorris HH
    Anal Bioanal Chem; 2017 Oct; 409(25):5855-5874. PubMed ID: 28710516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy Flux Manipulation in Upconversion Nanosystems.
    Liang L; Qin X; Zheng K; Liu X
    Acc Chem Res; 2019 Jan; 52(1):228-236. PubMed ID: 30557000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manipulating energy transfer in lanthanide-doped single nanoparticles for highly enhanced upconverting luminescence.
    Zhuo Z; Liu Y; Liu D; Huang P; Jiang F; Chen X; Hong M
    Chem Sci; 2017 Jul; 8(7):5050-5056. PubMed ID: 29568476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging ≈800 nm Excited Lanthanide-Doped Upconversion Nanoparticles.
    Xie X; Li Z; Zhang Y; Guo S; Pendharkar AI; Lu M; Huang L; Huang W; Han G
    Small; 2017 Feb; 13(6):. PubMed ID: 27982542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal.
    Chen G; Damasco J; Qiu H; Shao W; Ohulchanskyy TY; Valiev RR; Wu X; Han G; Wang Y; Yang C; Ågren H; Prasad PN
    Nano Lett; 2015 Nov; 15(11):7400-7. PubMed ID: 26487489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes.
    Chen B; Peng D; Chen X; Qiao X; Fan X; Wang F
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12788-90. PubMed ID: 26315850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local-structure-dependent luminescence in lanthanide-doped inorganic nanocrystals for biological applications.
    Fu H; Ma Y; Liu Y; Hong M
    Chem Commun (Camb); 2021 Mar; 57(24):2970-2981. PubMed ID: 33624635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light upconverting core-shell nanostructures: nanophotonic control for emerging applications.
    Chen G; Ågren H; Ohulchanskyy TY; Prasad PN
    Chem Soc Rev; 2015 Mar; 44(6):1680-713. PubMed ID: 25335878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy Manipulation in Lanthanide-Doped Core-Shell Nanoparticles for Tunable Dual-Mode Luminescence toward Advanced Anti-Counterfeiting.
    Ding M; Dong B; Lu Y; Yang X; Yuan Y; Bai W; Wu S; Ji Z; Lu C; Zhang K; Zeng H
    Adv Mater; 2020 Nov; 32(45):e2002121. PubMed ID: 33002232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advances of lanthanide-doped upconversion nanoparticles for biological applications.
    Li H; Wang X; Huang D; Chen G
    Nanotechnology; 2020 Feb; 31(7):072001. PubMed ID: 31627201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review.
    DaCosta MV; Doughan S; Han Y; Krull UJ
    Anal Chim Acta; 2014 Jun; 832():1-33. PubMed ID: 24890691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing upconversion of manganese through spatial control of energy migration for multi-level anti-counterfeiting.
    Yan L; Wang X; An Z; Hu Z; Liu H; Xu S; Zhou B
    Nanoscale; 2021 Sep; 13(33):13995-14000. PubMed ID: 34477679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation.
    Wang F; Liu X
    Acc Chem Res; 2014 Apr; 47(4):1378-85. PubMed ID: 24611606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal-Based Linear Light Upconversion Implemented in Molecular Complexes: Challenges and Perspectives.
    Bolvin H; Fürstenberg A; Golesorkhi B; Nozary H; Taarit I; Piguet C
    Acc Chem Res; 2022 Feb; 55(3):442-456. PubMed ID: 35067044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Luminescent Lifetime Regulation of Lanthanide-Doped Nanoparticles for Biosensing.
    Wang M; Hu C; Su Q
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of surface coating on energy migration-mediated upconversion.
    Su Q; Han S; Xie X; Zhu H; Chen H; Chen CK; Liu RS; Chen X; Wang F; Liu X
    J Am Chem Soc; 2012 Dec; 134(51):20849-57. PubMed ID: 23210614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Enhanced Cooperative Upconversion Luminescence through Energy Transfer Optimization and Quenching Protection.
    Xue M; Zhu X; Qiu X; Gu Y; Feng W; Li F
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17894-901. PubMed ID: 27347810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upconversion Nanostructures Applied in Theranostic Systems.
    Lu C; Joulin E; Tang H; Pouri H; Zhang J
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.