These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35188179)

  • 1. µProteInS-a proteogenomics pipeline for finding novel bacterial microproteins encoded by small ORFs.
    de Souza EV; Dalberto PF; Machado VP; Canedo A; Saghatelian A; Machado P; Basso LA; Bizarro CV
    Bioinformatics; 2022 Apr; 38(9):2612-2614. PubMed ID: 35188179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Novel Bacterial Microproteins Encoded by Small Open Reading Frames Using a Computational Proteogenomics Workflow.
    de Souza EV; Bizarro CV
    Methods Mol Biol; 2024; 2836():19-34. PubMed ID: 38995533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of transcript assembly on the proteogenomics discovery of microproteins.
    Ma J; Saghatelian A; Shokhirev MN
    PLoS One; 2018; 13(3):e0194518. PubMed ID: 29584760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment-Based Proteogenomics Identifies Microproteins, Missing Proteins, and Novel smORFs in Saccharomyces cerevisiae.
    He C; Jia C; Zhang Y; Xu P
    J Proteome Res; 2018 Jul; 17(7):2335-2344. PubMed ID: 29897761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rp3: Ribosome profiling-assisted proteogenomics improves coverage and confidence during microprotein discovery.
    Vieira de Souza E; L Bookout A; Barnes CA; Miller B; Machado P; Basso LA; Bizarro CV; Saghatelian A
    Nat Commun; 2024 Aug; 15(1):6839. PubMed ID: 39122697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short open reading frames (sORFs) and microproteins: an update on their identification and validation measures.
    Leong AZ; Lee PY; Mohtar MA; Syafruddin SE; Pung YF; Low TY
    J Biomed Sci; 2022 Mar; 29(1):19. PubMed ID: 35300685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. smORFunction: a tool for predicting functions of small open reading frames and microproteins.
    Ji X; Cui C; Cui Q
    BMC Bioinformatics; 2020 Oct; 21(1):455. PubMed ID: 33054771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Integration of Proteogenomics and Ribosome Profiling Circumvents Key Limitations to Increase the Coverage and Confidence of Novel Microproteins.
    de Souza EV; Bookout AL; Barnes CA; Miller B; Machado P; Basso LA; Bizarro CV; Saghatelian A
    bioRxiv; 2023 Oct; ():. PubMed ID: 37808637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microproteins-Discovery, structure, and function.
    Mohsen JJ; Martel AA; Slavoff SA
    Proteomics; 2023 Dec; 23(23-24):e2100211. PubMed ID: 37603371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Cryptic Bacterial Microproteome.
    Fesenko I; Sahakyan H; Shabalina SA; Koonin EV
    bioRxiv; 2024 Feb; ():. PubMed ID: 38903115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. orfipy: a fast and flexible tool for extracting ORFs.
    Singh U; Wurtele ES
    Bioinformatics; 2021 Sep; 37(18):3019-3020. PubMed ID: 33576786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication.
    Tanizawa Y; Fujisawa T; Nakamura Y
    Bioinformatics; 2018 Mar; 34(6):1037-1039. PubMed ID: 29106469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptimapper: proteogenomics workflow for the expert annotation of eukaryotic genomes.
    Guillot L; Delage L; Viari A; Vandenbrouck Y; Com E; Ritter A; Lavigne R; Marie D; Peterlongo P; Potin P; Pineau C
    BMC Genomics; 2019 Jan; 20(1):56. PubMed ID: 30654742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pinstripe: a suite of programs for integrating transcriptomic and proteomic datasets identifies novel proteins and improves differentiation of protein-coding and non-coding genes.
    Gascoigne DK; Cheetham SW; Cattenoz PB; Clark MB; Amaral PP; Taft RJ; Wilhelm D; Dinger ME; Mattick JS
    Bioinformatics; 2012 Dec; 28(23):3042-50. PubMed ID: 23044541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Proteomics Enables Identification of Nonannotated Cold Shock Proteins in E. coli.
    D'Lima NG; Khitun A; Rosenbloom AD; Yuan P; Gassaway BM; Barber KW; Rinehart J; Slavoff SA
    J Proteome Res; 2017 Oct; 16(10):3722-3731. PubMed ID: 28861998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteogenomic Methods to Improve Genome Annotation.
    Datta KK; Madugundu AK; Gowda H
    Methods Mol Biol; 2016; 1410():77-89. PubMed ID: 26867739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microproteins: a 3D protein structure prediction analysis.
    Thambu K; Glomb V; Hernandez Trapero R; Facelli JC
    J Biomol Struct Dyn; 2022; 40(24):13738-13746. PubMed ID: 34705603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ORFLine: a bioinformatic pipeline to prioritize small open reading frames identifies candidate secreted small proteins from lymphocytes.
    Hu F; Lu J; Matheson LS; Díaz-Muñoz MD; Saveliev A; Xu J; Turner M
    Bioinformatics; 2021 Oct; 37(19):3152-3159. PubMed ID: 33970232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrative proteogenomics approach reveals peptides encoded by annotated lincRNA in the mouse kidney inner medulla.
    Flower CT; Chen L; Jung HJ; Raghuram V; Knepper MA; Yang CR
    Physiol Genomics; 2020 Oct; 52(10):485-491. PubMed ID: 32866085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Prediction and Annotation of Small Open Reading Frames in Microbial Genomes.
    Durrant MG; Bhatt AS
    Cell Host Microbe; 2021 Jan; 29(1):121-131.e4. PubMed ID: 33290720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.