BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 35188184)

  • 1. High-performance single-cell gene regulatory network inference at scale: the Inferelator 3.0.
    Skok Gibbs C; Jackson CA; Saldi GA; Tjärnberg A; Shah A; Watters A; De Veaux N; Tchourine K; Yi R; Hamamsy T; Castro DM; Carriero N; Gorissen BL; Gresham D; Miraldi ER; Bonneau R
    Bioinformatics; 2022 Apr; 38(9):2519-2528. PubMed ID: 35188184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator.
    Madar A; Greenfield A; Vanden-Eijnden E; Bonneau R
    PLoS One; 2010 Mar; 5(3):e9803. PubMed ID: 20339551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments.
    Jackson CA; Castro DM; Saldi GA; Bonneau R; Gresham D
    Elife; 2020 Jan; 9():. PubMed ID: 31985403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Inferelator 2.0: a scalable framework for reconstruction of dynamic regulatory network models.
    Madar A; Greenfield A; Ostrer H; Vanden-Eijnden E; Bonneau R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5448-51. PubMed ID: 19964678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks.
    Moerman T; Aibar Santos S; Bravo González-Blas C; Simm J; Moreau Y; Aerts J; Aerts S
    Bioinformatics; 2019 Jun; 35(12):2159-2161. PubMed ID: 30445495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr.
    Privé F; Aschard H; Ziyatdinov A; Blum MGB
    Bioinformatics; 2018 Aug; 34(16):2781-2787. PubMed ID: 29617937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts.
    Nair S; Kim DS; Perricone J; Kundaje A
    Bioinformatics; 2019 Jul; 35(14):i108-i116. PubMed ID: 31510655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GENECI: A novel evolutionary machine learning consensus-based approach for the inference of gene regulatory networks.
    Segura-Ortiz A; García-Nieto J; Aldana-Montes JF; Navas-Delgado I
    Comput Biol Med; 2023 Mar; 155():106653. PubMed ID: 36803795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. seqgra: principled selection of neural network architectures for genomics prediction tasks.
    Krismer K; Hammelman J; Gifford DK
    Bioinformatics; 2022 Apr; 38(9):2381-2388. PubMed ID: 35191481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ASTER: accurately estimating the number of cell types in single-cell chromatin accessibility data.
    Chen S; Wang R; Long W; Jiang R
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EnGRaiN: a supervised ensemble learning method for recovery of large-scale gene regulatory networks.
    Aluru M; Shrivastava H; Chockalingam SP; Shivakumar S; Aluru S
    Bioinformatics; 2022 Feb; 38(5):1312-1319. PubMed ID: 34888624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation.
    Matsumoto H; Kiryu H; Furusawa C; Ko MSH; Ko SBH; Gouda N; Hayashi T; Nikaido I
    Bioinformatics; 2017 Aug; 33(15):2314-2321. PubMed ID: 28379368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scAMACE: model-based approach to the joint analysis of single-cell data on chromatin accessibility, gene expression and methylation.
    Wangwu J; Sun Z; Lin Z
    Bioinformatics; 2021 Nov; 37(21):3874-3880. PubMed ID: 34086847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scMEGA: single-cell multi-omic enhancer-based gene regulatory network inference.
    Li Z; Nagai JS; Kuppe C; Kramann R; Costa IG
    Bioinform Adv; 2023; 3(1):vbad003. PubMed ID: 36698768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PyLiger: scalable single-cell multi-omic data integration in Python.
    Lu L; Welch JD
    Bioinformatics; 2022 May; 38(10):2946-2948. PubMed ID: 35561174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian information sharing enhances detection of regulatory associations in rare cell types.
    Wu AP; Peng J; Berger B; Cho H
    Bioinformatics; 2021 Jul; 37(Suppl_1):i349-i357. PubMed ID: 34252956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GReNaDIne: A Data-Driven Python Library to Infer Gene Regulatory Networks from Gene Expression Data.
    Schmitt P; Sorin B; Frouté T; Parisot N; Calevro F; Peignier S
    Genes (Basel); 2023 Jan; 14(2):. PubMed ID: 36833196
    [No Abstract]   [Full Text] [Related]  

  • 19. CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data.
    Zheng G; Xu Y; Zhang X; Liu ZP; Wang Z; Chen L; Zhu XG
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):535. PubMed ID: 28155637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating Illumina metagenomic data with InSilicoSeq.
    Gourlé H; Karlsson-Lindsjö O; Hayer J; Bongcam-Rudloff E
    Bioinformatics; 2019 Feb; 35(3):521-522. PubMed ID: 30016412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.