These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35188283)

  • 21. Effect of oil sands process-affected water on toxicity of retene to early life-stages of Japanese medaka (Oryzias latipes).
    Alharbi HA; Morandi G; Giesy JP; Wiseman SB
    Aquat Toxicol; 2016 Jul; 176():1-9. PubMed ID: 27104238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Treatment of oil sands process affected waters by constructed wetlands: Evaluation of designs and plant types.
    Simair MC; Parrott JL; le Roux M; Gupta V; Frank RA; Peru KM; Ajaero C; McMartin DW; Headley JV
    Sci Total Environ; 2021 Jun; 772():145508. PubMed ID: 33581517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Naphthenic acid fraction components from oil sands process-affected water from the Athabasca Oil Sands Region impair murine osteoblast differentiation and function.
    Gutgesell RM; Jamshed L; Frank RA; Hewitt LM; Thomas PJ; Holloway AC
    J Appl Toxicol; 2022 Dec; 42(12):2005-2015. PubMed ID: 35894097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxicokinetics and toxicodynamics of chlorpyrifos is altered in embryos of Japanese medaka exposed to oil sands process-affected water: evidence for inhibition of P-glycoprotein.
    Alharbi HA; Alcorn J; Al-Mousa A; Giesy JP; Wiseman SB
    J Appl Toxicol; 2017 May; 37(5):591-601. PubMed ID: 27774651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular profiles of naphthenic acid fraction compounds from mine lease wetlands in the Athabasca Oil Sands Region.
    Vander Meulen IJ; Klemish JL; Peru KM; Chen DDY; Pyle GG; Headley JV
    Chemosphere; 2021 Jun; 272():129892. PubMed ID: 33601202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid.
    Cavallin JE; Ankley GT; Blackwell BR; Blanksma CA; Fay KA; Jensen KM; Kahl MD; Knapen D; Kosian PA; Poole ST; Randolph EC; Schroeder AL; Vergauwen L; Villeneuve DL
    Environ Toxicol Chem; 2017 Nov; 36(11):2942-2952. PubMed ID: 28488362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental levels of venlafaxine impact larval behavioural performance in fathead minnows.
    Thompson WA; Vijayan MM
    Chemosphere; 2020 Nov; 259():127437. PubMed ID: 32593824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Embryotoxicity of maternally transferred methylmercury to fathead minnows (Pimephales promelas).
    Bridges KN; Soulen BK; Overturf CL; Drevnick PE; Roberts AP
    Environ Toxicol Chem; 2016 Jun; 35(6):1436-41. PubMed ID: 26471903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term effects of an early-life exposure of fathead minnows to sediments containing bitumen. Part I: Survival, deformities, and growth.
    Vignet C; Frank RA; Yang C; Wang Z; Shires K; Bree M; Sullivan C; Norwood WP; Hewitt LM; McMaster ME; Parrott JL
    Environ Pollut; 2019 Aug; 251():246-256. PubMed ID: 31082609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toxicity of oil sands acid-extractable organic fractions to freshwater fish: Pimephales promelas (fathead minnow) and Oryzias latipes (Japanese medaka).
    Bauer AE; Frank RA; Headley JV; Peru KM; Farwell AJ; Dixon DG
    Chemosphere; 2017 Mar; 171():168-176. PubMed ID: 28013078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Persistent and transgenerational effects of raw and ozonated oil sands process-affected water exposure on a model vertebrate, the zebrafish.
    Philibert DA; Lyons DD; Qin R; Huang R; El-Din MG; Tierney KB
    Sci Total Environ; 2019 Nov; 693():133611. PubMed ID: 31634996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of low, subchronic exposure of 2,4-Dichlorophenoxyacetic acid (2,4-D) and commercial 2,4-D formulations on early life stages of fathead minnows (Pimephales promelas).
    Dehnert GK; Freitas MB; DeQuattro ZA; Barry T; Karasov WH
    Environ Toxicol Chem; 2018 Oct; 37(10):2550-2559. PubMed ID: 29920774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multi-step approach: Coupling of biodegradation and UV photocatalytic oxidation TiO
    Miles SM; Balaberda AL; Leshuk TMC; Peru K; Headley J; Gu F; Ulrich AC
    Chemosphere; 2024 Aug; 361():142502. PubMed ID: 38838863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional responses of the brain-gonad-liver axis of fathead minnows exposed to untreated and ozone-treated oil sands process-affected water.
    He Y; Wiseman SB; Wang N; Perez-Estrada LA; El-Din MG; Martin JW; Giesy JP
    Environ Sci Technol; 2012 Sep; 46(17):9701-8. PubMed ID: 22856545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chronic Exposure to Environmentally Relevant Concentrations of Imidacloprid Impact Survival and Ecologically Relevant Behaviors of Fathead Minnow Larvae.
    Jeninga AJ; Wallace Z; Victoria S; Harrahy E; King-Heiden TC
    Environ Toxicol Chem; 2023 Oct; 42(10):2184-2192. PubMed ID: 37401861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In ovo exposure of fathead minnow (Pimephales promelas) to selenomethionine via maternal transfer and embryo microinjection: A comparative study.
    Lane T; Green D; Bluhm K; Raes K; Janz DM; Liber K; Hecker M
    Aquat Toxicol; 2019 Nov; 216():105299. PubMed ID: 31593906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low adsorption affinity of athabasca oil sands naphthenic acid fraction compounds to a peat-mineral mixture.
    Vander Meulen IJ; Steiger BGK; Asadi M; Peru KM; Degenhardt D; McMartin DW; McPhedran KN; Wilson LD; Headley JV
    Chemosphere; 2024 Jun; 358():142076. PubMed ID: 38670506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptional responses of male fathead minnows exposed to oil sands process-affected water.
    Wiseman SB; He Y; Gamal-El Din M; Martin JW; Jones PD; Hecker M; Giesy JP
    Comp Biochem Physiol C Toxicol Pharmacol; 2013 Mar; 157(2):227-35. PubMed ID: 23246600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Land Use Contributions to Adverse Biological Effects in a Complex Agricultural and Urban Watershed: A Case Study of the Maumee River.
    Cipoletti N; Jorgenson ZG; Banda JA; Hummel SL; Kohno S; Schoenfuss HL
    Environ Toxicol Chem; 2019 May; 38(5):1035-1051. PubMed ID: 30883853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of Diltiazem on Fathead Minnows Across Dissolved Oxygen Gradients.
    Saari GN; Corrales J; Haddad SP; Chambliss CK; Brooks BW
    Environ Toxicol Chem; 2018 Nov; 37(11):2835-2850. PubMed ID: 30055012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.