BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35188383)

  • 1. Two-Component Redox Organocatalyst for Peptide Bond Formation.
    Handoko ; Panigrahi NR; Arora PS
    J Am Chem Soc; 2022 Mar; 144(8):3637-3643. PubMed ID: 35188383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational Design of an Organocatalyst for Peptide Bond Formation.
    Handoko ; Satishkumar S; Panigrahi NR; Arora PS
    J Am Chem Soc; 2019 Oct; 141(40):15977-15985. PubMed ID: 31508947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct amidation of carboxylic acids catalyzed by ortho-iodo arylboronic acids: catalyst optimization, scope, and preliminary mechanistic study supporting a peculiar halogen acceleration effect.
    Gernigon N; Al-Zoubi RM; Hall DG
    J Org Chem; 2012 Oct; 77(19):8386-400. PubMed ID: 23013456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An unnatural amino acid that induces beta-sheet folding and interaction in peptides.
    Nowick JS; Lam KS; Khasanova TV; Kemnitzer WE; Maitra S; Mee HT; Liu R
    J Am Chem Soc; 2002 May; 124(18):4972-3. PubMed ID: 11982357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioacetic acid/NaSH-mediated synthesis of N-protected amino thioacids and their utility in peptide synthesis.
    Mali SM; Gopi HN
    J Org Chem; 2014 Mar; 79(6):2377-83. PubMed ID: 24548175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient amide bond formation through a rapid and strong activation of carboxylic acids in a microflow reactor.
    Fuse S; Mifune Y; Takahashi T
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):851-5. PubMed ID: 24402801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Dependent peptide bond formation by the selective coupling of α-amino acids in water.
    Wu LF; Liu Z; Sutherland JD
    Chem Commun (Camb); 2021 Jan; 57(1):73-76. PubMed ID: 33242043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quaternary β
    Yu JS; Noda H; Shibasaki M
    Angew Chem Int Ed Engl; 2018 Jan; 57(3):818-822. PubMed ID: 29168280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation.
    Jaradat DMM
    Amino Acids; 2018 Jan; 50(1):39-68. PubMed ID: 29185032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New heterocyclic beta-sheet ligands with peptidic recognition elements.
    Rzepecki P; Gallmeier H; Geib N; Cernovska K; König B; Schrader T
    J Org Chem; 2004 Aug; 69(16):5168-78. PubMed ID: 15287758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient amidation from carboxylic acids and azides via selenocarboxylates: application to the coupling of amino acids and peptides with azides.
    Wu X; Hu L
    J Org Chem; 2007 Feb; 72(3):765-74. PubMed ID: 17253793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic Strategies for the Biosynthesis of N-Acyl Amino Acid Amides.
    Kua GKB; Nguyen GKT; Li Z
    Chembiochem; 2024 Feb; 25(4):e202300672. PubMed ID: 38051126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.
    Das S; Li Y; Bornschein C; Pisiewicz S; Kiersch K; Michalik D; Gallou F; Junge K; Beller M
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12389-93. PubMed ID: 26189442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scope and limitations of pseudoprolines as individual amino acids in peptide synthesis.
    Senko DA; Timofeev ND; Kasheverov IE; Ivanov IA
    Amino Acids; 2021 May; 53(5):665-671. PubMed ID: 33813636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amide bond formation through iron-catalyzed oxidative amidation of tertiary amines with anhydrides.
    Li Y; Ma L; Jia F; Li Z
    J Org Chem; 2013 Jun; 78(11):5638-46. PubMed ID: 23668222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes.
    Krause T; Baader S; Erb B; Gooßen LJ
    Nat Commun; 2016 Jun; 7():11732. PubMed ID: 27282773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient solid-phase synthesis of peptide-based phosphine ligands: towards combinatorial libraries of selective transition metal catalysts.
    Christensen CA; Meldal M
    Chemistry; 2005 Jul; 11(14):4121-31. PubMed ID: 15861474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disulfide linkage to polyacrylic resin for automated Fmoc peptide synthesis. Immunochemical applications of peptide resins and mercaptoamide peptides.
    Méry J; Granier C; Juin M; Brugidou J
    Int J Pept Protein Res; 1993 Jul; 42(1):44-52. PubMed ID: 8370643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing and engineering amide bond forming ligases for the synthesis of amides.
    Winn M; Richardson SM; Campopiano DJ; Micklefield J
    Curr Opin Chem Biol; 2020 Apr; 55():77-85. PubMed ID: 32058241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clickable coupling of carboxylic acids and amines at room temperature mediated by SO
    Wang SM; Zhao C; Zhang X; Qin HL
    Org Biomol Chem; 2019 Apr; 17(16):4087-4101. PubMed ID: 30957817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.