These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 35188456)

  • 1. Biosynthesis of
    Cui J; Ju KS
    ACS Chem Biol; 2024 Jul; 19(7):1506-1514. PubMed ID: 38885091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphonoalamides Reveal the Biosynthetic Origin of Phosphonoalanine Natural Products and a Convergent Pathway for Their Diversification.
    Cui JJ; Zhang Y; Ju KS
    Angew Chem Int Ed Engl; 2024 May; ():e202405052. PubMed ID: 38780891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of a New, Recurrent Enzyme in Bacterial Phosphonate Degradation: (
    Zangelmi E; Stanković T; Malatesta M; Acquotti D; Pallitsch K; Peracchi A
    Biochemistry; 2021 Apr; 60(15):1214-1225. PubMed ID: 33830741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of Antimicrobial Phosphonopeptide Natural Products from Bacillus velezensis by Genome Mining.
    Wilson J; Cui J; Nakao T; Kwok H; Zhang Y; Kayrouz CM; Pham TM; Roodhouse H; Ju KS
    Appl Environ Microbiol; 2023 Jun; 89(6):e0033823. PubMed ID: 37377428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Pathway for Biosynthesis of the Herbicidal Phosphonate Natural Product Phosphonothrixin Is Widespread in Actinobacteria.
    Bown L; Hirota R; Goettge MN; Cui J; Krist DT; Zhu L; Giurgiu C; van der Donk WA; Ju KS; Metcalf WW
    J Bacteriol; 2023 May; 205(5):e0048522. PubMed ID: 37074199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanism of enzymes involved in biosynthesis and breakdown of the phosphonates fosfomycin, dehydrophos, and phosphinothricin.
    Nair SK; van der Donk WA
    Arch Biochem Biophys; 2011 Jan; 505(1):13-21. PubMed ID: 20854789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peculiar Phosphonate Modifications of Velvet Worm Slime Revealed by Advanced Nuclear Magnetic Resonance and Mass Spectrometry.
    Poulhazan A; Baer A; Daliaho G; Mentink-Vigier F; Arnold AA; Browne DC; Hering L; Archer-Hartmann S; Pepi LE; Azadi P; Schmidt S; Mayer G; Marcotte I; Harrington MJ
    J Am Chem Soc; 2023 Sep; 145(38):20749-20754. PubMed ID: 37722679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanochemical Phosphorylation of Acetylides Using Condensed Phosphates: A Sustainable Route to Alkynyl Phosphonates.
    Xin T; Cummins CC
    ACS Cent Sci; 2023 Aug; 9(8):1575-1580. PubMed ID: 37637745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing the evolution of phosphorus-cycling enzymes through geological time using phylogenomics.
    Boden JS; Zhong J; Anderson RE; Stüeken EE
    Nat Commun; 2024 May; 15(1):3703. PubMed ID: 38697988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering the role of recurrent FAD-dependent enzymes in bacterial phosphonate catabolism.
    Zangelmi E; Ruffolo F; Dinhof T; Gerdol M; Malatesta M; Chin JP; Rivetti C; Secchi A; Pallitsch K; Peracchi A
    iScience; 2023 Nov; 26(11):108108. PubMed ID: 37876809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Microbial Degradation of Natural and Anthropogenic Phosphonates.
    Ruffolo F; Dinhof T; Murray L; Zangelmi E; Chin JP; Pallitsch K; Peracchi A
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in the Synthesis and Analysis of Biologically Active Phosphometabolites.
    Wohlgemuth R
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-Aminoethylphosphonate utilization in Pseudomonas putida BIRD-1 is controlled by multiple master regulators.
    Murphy ARJ; Scanlan DJ; Chen Y; Bending GD; Hammond JP; Wellington EMH; Lidbury IDEA
    Environ Microbiol; 2022 Apr; 24(4):1902-1917. PubMed ID: 35229442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An inventory of early branch points in microbial phosphonate biosynthesis.
    Li S; Horsman GP
    Microb Genom; 2022 Feb; 8(2):. PubMed ID: 35188456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the biosynthesis of bialaphos. Biochemical mechanism of C-P bond formation: discovery of phosphonopyruvate decarboxylase which catalyzes the formation of phosphonoacetaldehyde from phosphonopyruvate.
    Nakashita H; Watanabe K; Hara O; Hidaka T; Seto H
    J Antibiot (Tokyo); 1997 Mar; 50(3):212-9. PubMed ID: 9439692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity and abundance of phosphonate biosynthetic genes in nature.
    Yu X; Doroghazi JR; Janga SC; Zhang JK; Circello B; Griffin BM; Labeda DP; Metcalf WW
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20759-64. PubMed ID: 24297932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the biosynthesis of bialaphos. Biochemical mechanism of C-P bond formation: discovery of phosphonopyruvate decarboxylase which catalyzes the formation of phosphonoacetaldehyde from phosphonopyruvate.
    Nakashita H; Watanabe K; Hara O; Hidaka T; Seto H
    J Antibiot (Tokyo); 1997 Mar; 50(3):212-9. PubMed ID: 9127192
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.