These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35188510)

  • 1. Peptide probes for proteases - innovations and applications for monitoring proteolytic activity.
    Rodriguez-Rios M; Megia-Fernandez A; Norman DJ; Bradley M
    Chem Soc Rev; 2022 Mar; 51(6):2081-2120. PubMed ID: 35188510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteolytic fingerprinting of complex biological samples using combinatorial libraries of fluorogenic probes.
    Jambunathan K; Watson DS; Kodukula K; Galande AK
    Curr Protoc Protein Sci; 2012 Nov; Chapter 21():21.22.1-21.22.14. PubMed ID: 23151745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative measurement of proteolytic rates with quantum dot-peptide substrate conjugates and Förster resonance energy transfer.
    Wu M; Petryayeva E; Medintz IL; Algar WR
    Methods Mol Biol; 2014; 1199():215-39. PubMed ID: 25103812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of proteases using activity-based probes.
    Zmudzinski M; Malon O; Poręba M; Drąg M
    Curr Opin Chem Biol; 2023 Jun; 74():102299. PubMed ID: 37031620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle-based probes to enable noninvasive imaging of proteolytic activity for cancer diagnosis.
    Anani T; Panizzi P; David AE
    Nanomedicine (Lond); 2016 Aug; 11(15):2007-22. PubMed ID: 27465386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity.
    Massey M; Li JJ; Algar WR
    Methods Mol Biol; 2017; 1530():63-97. PubMed ID: 28150196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-based profiling of proteases.
    Sanman LE; Bogyo M
    Annu Rev Biochem; 2014; 83():249-73. PubMed ID: 24905783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Protease Activity by Fluorescent Peptide Zymography.
    Deshmukh AA; Weist JL; Leight JL
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradomics in Biomarker Discovery.
    Grozdanić M; Vidmar R; Vizovišek M; Fonović M
    Proteomics Clin Appl; 2019 Nov; 13(6):e1800138. PubMed ID: 31291060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy.
    Vizovisek M; Ristanovic D; Menghini S; Christiansen MG; Schuerle S
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33802262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute proteomic quantification of the activity state of proteases and proteolytic cleavages using proteolytic signature peptides and isobaric tags.
    Fahlman RP; Chen W; Overall CM
    J Proteomics; 2014 Apr; 100():79-91. PubMed ID: 24060996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging and quantifying the dynamics of tumor-associated proteolysis.
    Sameni M; Cavallo-Medved D; Dosescu J; Jedeszko C; Moin K; Mullins SR; Olive MB; Rudy D; Sloane BF
    Clin Exp Metastasis; 2009; 26(4):299-309. PubMed ID: 19082919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative kinetics of proteolytic enzymes determined by a surface concentration-based assay using peptide arrays.
    Jung SH; Kong DH; Park SW; Kim YM; Ha KS
    Analyst; 2012 Aug; 137(16):3814-20. PubMed ID: 22768390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Proteases Involved in Peptide Generation.
    Casteleiro MA; Stevens R; Klein J
    Methods Mol Biol; 2017; 1574():205-213. PubMed ID: 28315253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profiling protease activities by dynamic proteomics workflows.
    Klingler D; Hardt M
    Proteomics; 2012 Feb; 12(4-5):587-96. PubMed ID: 22246865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes.
    Edgington LE; Verdoes M; Bogyo M
    Curr Opin Chem Biol; 2011 Dec; 15(6):798-805. PubMed ID: 22098719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-Selective Protection of Peptides from Proteolysis.
    Li X; Chen K; Zhao Y
    Angew Chem Int Ed Engl; 2021 May; 60(20):11092-11097. PubMed ID: 33725413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial proteases and virulence.
    Frees D; Brøndsted L; Ingmer H
    Subcell Biochem; 2013; 66():161-92. PubMed ID: 23479441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.