These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Proton Switch in the Secondary Coordination Sphere to Control Catalytic Events at the Metal Center: Biomimetic Oxo Transfer Chemistry of Nickel Amidate Complex. Kim S; Jeong HY; Kim S; Kim H; Lee S; Cho J; Kim C; Lee D Chemistry; 2021 Mar; 27(14):4700-4708. PubMed ID: 33427344 [TBL] [Abstract][Full Text] [Related]
8. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony. Jones JS; Gabbaï FP Acc Chem Res; 2016 May; 49(5):857-67. PubMed ID: 27092722 [TBL] [Abstract][Full Text] [Related]
9. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Van Stappen C; Deng Y; Liu Y; Heidari H; Wang JX; Zhou Y; Ledray AP; Lu Y Chem Rev; 2022 Jul; 122(14):11974-12045. PubMed ID: 35816578 [TBL] [Abstract][Full Text] [Related]
10. Expansion of Redox Chemistry in Designer Metalloenzymes. Yu Y; Liu X; Wang J Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694 [TBL] [Abstract][Full Text] [Related]
11. Oxidoreductases and metal cofactors in the functioning of the earth. Hay Mele B; Monticelli M; Leone S; Bastoni D; Barosa B; Cascone M; Migliaccio F; Montemagno F; Ricciardelli A; Tonietti L; Rotundi A; Cordone A; Giovannelli D Essays Biochem; 2023 Aug; 67(4):653-670. PubMed ID: 37503682 [TBL] [Abstract][Full Text] [Related]
12. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation. Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095 [TBL] [Abstract][Full Text] [Related]
13. Molecular designs for controlling the local environments around metal ions. Cook SA; Borovik AS Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849 [TBL] [Abstract][Full Text] [Related]
14. Porous metal-organic frameworks for heterogeneous biomimetic catalysis. Zhao M; Ou S; Wu CD Acc Chem Res; 2014 Apr; 47(4):1199-207. PubMed ID: 24499017 [TBL] [Abstract][Full Text] [Related]
15. From Widely Accepted Concepts in Coordination Chemistry to Inverted Ligand Fields. Hoffmann R; Alvarez S; Mealli C; Falceto A; Cahill TJ; Zeng T; Manca G Chem Rev; 2016 Jul; 116(14):8173-92. PubMed ID: 27398715 [TBL] [Abstract][Full Text] [Related]
16. Metals in biomass: from the biological system of elements to reasons of fractionation and element use. Fränzle S; Markert B Environ Sci Pollut Res Int; 2007 Sep; 14(6):404-13. PubMed ID: 17993224 [TBL] [Abstract][Full Text] [Related]
17. Emergence of metal selectivity and promiscuity in metalloenzymes. Eom H; Song WJ J Biol Inorg Chem; 2019 Jun; 24(4):517-531. PubMed ID: 31115763 [TBL] [Abstract][Full Text] [Related]
18. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Rakowski DuBois M; DuBois DL Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445 [TBL] [Abstract][Full Text] [Related]
19. A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation. Shaw WJ; Helm ML; DuBois DL Biochim Biophys Acta; 2013; 1827(8-9):1123-39. PubMed ID: 23313415 [TBL] [Abstract][Full Text] [Related]
20. Bio-inspired, Multifunctional Metal-Thiolate Motif: From Electron Transfer to Sulfur Reactivity and Small-Molecule Activation. Gennari M; Duboc C Acc Chem Res; 2020 Nov; 53(11):2753-2761. PubMed ID: 33074643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]