These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35188583)

  • 1. Modelled lung deposition and retention of welding fume particles in occupational scenarios: a comparison to doses used in vitro.
    McCarrick S; Karlsson HL; Carlander U
    Arch Toxicol; 2022 Apr; 96(4):969-985. PubMed ID: 35188583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory deposition of ultrafine welding fume particles.
    Su WC; Chen Y; Bezerra M; Wang J
    J Occup Environ Hyg; 2019 Oct; 16(10):694-706. PubMed ID: 31461396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exposure to inhalable, respirable, and ultrafine particles in welding fume.
    Lehnert M; Pesch B; Lotz A; Pelzer J; Kendzia B; Gawrych K; Heinze E; Van Gelder R; Punkenburg E; Weiss T; Mattenklott M; Hahn JU; Möhlmann C; Berges M; Hartwig A; Brüning T;
    Ann Occup Hyg; 2012 Jul; 56(5):557-67. PubMed ID: 22539559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.
    Tian L; Inthavong K; Lidén G; Shang Y; Tu J
    Ann Occup Hyg; 2016 Jul; 60(6):731-47. PubMed ID: 27074799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotoxicity and inflammatory potential of stainless steel welding fume particles: an in vitro study on standard vs Cr(VI)-reduced flux-cored wires and the role of released metals.
    McCarrick S; Romanovski V; Wei Z; Westin EM; Persson KA; Trydell K; Wagner R; Odnevall I; Hedberg YS; Karlsson HL
    Arch Toxicol; 2021 Sep; 95(9):2961-2975. PubMed ID: 34287684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative microscopic study of human and rat lungs after overexposure to welding fume.
    Antonini JM; Roberts JR; Schwegler-Berry D; Mercer RR
    Ann Occup Hyg; 2013 Nov; 57(9):1167-79. PubMed ID: 23798603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.
    Graczyk H; Lewinski N; Zhao J; Concha-Lozano N; Riediker M
    Ann Occup Hyg; 2016 Mar; 60(2):205-19. PubMed ID: 26464505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.
    Cho HW; Yoon CS; Lee JH; Lee SJ; Viner A; Johnson EW
    Ann Occup Hyg; 2011 Jul; 55(6):666-80. PubMed ID: 21742627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered ion transport in normal human bronchial epithelial cells following exposure to chemically distinct metal welding fume particles.
    Fedan JS; Thompson JA; Meighan TG; Zeidler-Erdely PC; Antonini JM
    Toxicol Appl Pharmacol; 2017 Jul; 326():1-6. PubMed ID: 28411035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes.
    Chang C; Demokritou P; Shafer M; Christiani D
    Environ Sci Process Impacts; 2013 Jan; 15(1):214-24. PubMed ID: 24592438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study.
    Graczyk H; Lewinski N; Zhao J; Sauvain JJ; Suarez G; Wild P; Danuser B; Riediker M
    Part Fibre Toxicol; 2016 Jun; 13(1):31. PubMed ID: 27286820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Exposure of Welders to Welding Fumes and Effect of Fume Extraction Systems Under Controlled Conditions.
    Brand P; Ebert B; Esser A; Sharma R
    J Occup Environ Med; 2021 Jun; 63(6):490-502. PubMed ID: 34048382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Manganese Fractionation Using a Sequential Extraction Method to Evaluate Welders' Gas Metal Arc Welding Exposures during Heavy Equipment Manufacturing.
    Hanley KW; Andrews R; Bertke S; Ashley K
    Ann Work Expo Health; 2017 Jan; 61(1):123-134. PubMed ID: 28395311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occupational exposure to nanoparticles originating from welding - case studies from the Czech Republic.
    Berger F; Bernatíková Š; Kocůrková L; Přichystalová R; Schreiberová L
    Med Pr; 2021 Jun; 72(3):219-230. PubMed ID: 33835113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhalation of gas metal arc-stainless steel welding fume promotes lung tumorigenesis in A/J mice.
    Falcone LM; Erdely A; Meighan TG; Battelli LA; Salmen R; McKinney W; Stone S; Cumpston A; Cumpston J; Andrews RN; Kashon M; Antonini JM; Zeidler-Erdely PC
    Arch Toxicol; 2017 Aug; 91(8):2953-2962. PubMed ID: 28054104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats.
    Antonini JM; Roberts JR; Stone S; Chen BT; Schwegler-Berry D; Chapman R; Zeidler-Erdely PC; Andrews RN; Frazer DG
    Arch Toxicol; 2011 May; 85(5):487-98. PubMed ID: 20924559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mimicking the human respiratory system: Online in vitro cell exposure for toxicity assessment of welding fume aerosol.
    Ward RX; Tilly TB; Mazhar SI; Robinson SE; Eiguren-Fernandez A; Wang J; Sabo-Attwood T; Wu CY
    J Hazard Mater; 2020 Aug; 395():122687. PubMed ID: 32330784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NTP Toxicity Study Report on the atmospheric characterization, particle size, chemical composition, and workplace exposure assessment of cellulose insulation (CELLULOSEINS).
    Morgan DL
    Toxic Rep Ser; 2006 Aug; (74):1-62, A1-C2. PubMed ID: 17160106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum.
    Pfefferkorn FE; Bello D; Haddad G; Park JY; Powell M; McCarthy J; Bunker KL; Fehrenbacher A; Jeon Y; Virji MA; Gruetzmacher G; Hoover MD
    Ann Occup Hyg; 2010 Jul; 54(5):486-503. PubMed ID: 20453001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential.
    Gangwal S; Brown JS; Wang A; Houck KA; Dix DJ; Kavlock RJ; Hubal EA
    Environ Health Perspect; 2011 Nov; 119(11):1539-46. PubMed ID: 21788197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.