These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 35188734)
1. Self-Driven Electrochromic Window System Cu/WO Guo J; Diao X; Wang M; Zhang ZB; Xie Y ACS Appl Mater Interfaces; 2022 Mar; 14(8):10517-10525. PubMed ID: 35188734 [TBL] [Abstract][Full Text] [Related]
2. Transparent Zinc-Mesh Electrodes for Solar-Charging Electrochromic Windows. Li H; Zhang W; Elezzabi AY Adv Mater; 2020 Oct; 32(43):e2003574. PubMed ID: 32954551 [TBL] [Abstract][Full Text] [Related]
3. Self-Driven Infrared Electrochromic Device with Tunable Optical and Thermal Management. Gong H; Ai J; Li W; Zhu J; Zhang Q; Liu J; Jin Y; Wang H ACS Appl Mater Interfaces; 2021 Oct; 13(42):50319-50328. PubMed ID: 34637271 [TBL] [Abstract][Full Text] [Related]
4. Dual-Functional Electrochromic Smart Window Using WO Dutta P; Verma M; Paliwal MS; Mondal I; Ganesha MK; Gupta R; Singh AK; Kulkarni GU ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38048181 [TBL] [Abstract][Full Text] [Related]
5. A Self-Bleaching Electrochromic Mirror Based on Metal Organic Frameworks. Wang K; Tao K; Jiang R; Zhang H; Liang L; Gao J; Cao H Materials (Basel); 2021 May; 14(11):. PubMed ID: 34073658 [TBL] [Abstract][Full Text] [Related]
6. Niobium Tungsten Oxides for Electrochromic Devices with Long-Term Stability. Wu C; Shao Z; Zhai W; Zhang X; Zhang C; Zhu C; Yu Y; Liu W ACS Nano; 2022 Feb; 16(2):2621-2628. PubMed ID: 35081308 [TBL] [Abstract][Full Text] [Related]
7. Potential Gradient-Driven Dual-Functional Electrochromic and Electrochemical Device Based on a Shared Electrode Design. Xu G; Zhang W; Zhu G; Xia H; Zhang H; Xie Q; Jin P; Zhang H; Yi C; Zhang R; Ji L; Shui T; Moloto N; She W; Sun Z Adv Sci (Weinh); 2024 Jul; 11(28):e2401948. PubMed ID: 38769650 [TBL] [Abstract][Full Text] [Related]
8. Optimal Rule-of-Thumb Design of Nickel-Vanadium Oxides as an Electrochromic Electrode with Ultrahigh Capacity and Ultrafast Color Tunability. Chavan HS; Hou B; Jo Y; Inamdar AI; Im H; Kim H ACS Appl Mater Interfaces; 2021 Dec; 13(48):57403-57410. PubMed ID: 34806376 [TBL] [Abstract][Full Text] [Related]
9. Lithium-Ion-Assisted Ultrafast Charging Double-Electrode Smart Windows with Energy Storage and Display Applications. Ma Q; Zhang H; Chen J; Wu W; Dong S ACS Cent Sci; 2020 Dec; 6(12):2209-2216. PubMed ID: 33376782 [TBL] [Abstract][Full Text] [Related]
10. Dual-Band Electrochromic Devices with a Transparent Conductive Capacitive Charge-Balancing Anode. Zhang S; Li Y; Zhang T; Cao S; Yao Q; Lin H; Ye H; Fisher A; Lee JY ACS Appl Mater Interfaces; 2019 Dec; 11(51):48062-48070. PubMed ID: 31790202 [TBL] [Abstract][Full Text] [Related]
11. Transparent metal oxide interlayer enabling durable and fast-switching zinc anode-based electrochromic devices. Xu B; Chen J; Li P; Ouyang Y; Ma Y; Wang H; Li H Nanoscale; 2023 Dec; 15(48):19629-19637. PubMed ID: 38018883 [TBL] [Abstract][Full Text] [Related]
12. Hierarchical NiO microflake films with high coloration efficiency, cyclic stability and low power consumption for applications in a complementary electrochromic device. Ma D; Shi G; Wang H; Zhang Q; Li Y Nanoscale; 2013 Jun; 5(11):4808-15. PubMed ID: 23613080 [TBL] [Abstract][Full Text] [Related]
13. An Electrochromic Nickel Phosphate Film for Large-Area Smart Window with Ultra-Large Optical Modulation. Lei P; Wang J; Gao Y; Hu C; Zhang S; Tong X; Wang Z; Gao Y; Cai G Nanomicro Lett; 2023 Jan; 15(1):34. PubMed ID: 36630017 [TBL] [Abstract][Full Text] [Related]
14. Novel Prussian White@MnO Ding Y; Wang M; Mei Z; Diao X ACS Appl Mater Interfaces; 2022 Nov; 14(43):48833-48843. PubMed ID: 36269142 [TBL] [Abstract][Full Text] [Related]
15. Flexible Inorganic All-Solid-State Electrochromic Devices toward Visual Energy Storage and Two-Dimensional Color Tunability. Ding Y; Wang M; Mei Z; Diao X ACS Appl Mater Interfaces; 2023 Mar; 15(12):15646-15656. PubMed ID: 36926798 [TBL] [Abstract][Full Text] [Related]
16. Self-Powered Flexible Electrochromic Smart Window. Wang JL; Sheng SZ; He Z; Wang R; Pan Z; Zhao HY; Liu JW; Yu SH Nano Lett; 2021 Dec; 21(23):9976-9982. PubMed ID: 34813332 [TBL] [Abstract][Full Text] [Related]
17. Brookite TiO Xing C; Yang L; He R; Spadaro MC; Zhang Y; Arbiol J; Li J; Poudel B; Nozariasbmarz A; Li W; Lim KH; Liu Y; Llorca J; Cabot A Small; 2023 Dec; 19(49):e2303639. PubMed ID: 37608461 [TBL] [Abstract][Full Text] [Related]
18. Self-Powered Rewritable Electrochromic Display based on WO Wu W; Fang H; Ma H; Wu L; Wang Q; Wang H ACS Appl Mater Interfaces; 2021 May; 13(17):20326-20335. PubMed ID: 33881294 [TBL] [Abstract][Full Text] [Related]
19. A layer-stacked NiO nanowire/nanosheet homostructure for electrochromic smart windows with ultra-large optical modulation. Gao Y; Lei P; Zhang S; Liu H; Hu C; Kou Z; Wang J; Cai G Nanoscale; 2023 May; 15(19):8685-8692. PubMed ID: 37128954 [TBL] [Abstract][Full Text] [Related]
20. A Reversible MnO Wang J; Zhou Y; Lv Y; Feng JF; Wang Z; Cai G Small; 2024 May; 20(21):e2310229. PubMed ID: 38185752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]