These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 35188758)
1. Insects as Chemical Sensors: Detection of Chemical Warfare Agent Simulants and Hydrolysis Products in the Blow Fly Using LC-MS/MS. Dowling SN; Skaggs CL; Owings CG; Moctar K; Picard CJ; Manicke NE Environ Sci Technol; 2022 Mar; 56(6):3535-3543. PubMed ID: 35188758 [TBL] [Abstract][Full Text] [Related]
2. Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry. McKenna J; Dhummakupt ES; Connell T; Demond PS; Miller DB; Michael Nilles J; Manicke NE; Glaros T Analyst; 2017 May; 142(9):1442-1451. PubMed ID: 28338135 [TBL] [Abstract][Full Text] [Related]
3. Monitoring Exposure to Five Chemical Warfare Agents Using the Dried Urine Spot Technique and Liquid Chromatography-Mass Spectrometry/Mass Spectrometry-In Vivo Determination of Sarin Metabolite in Mice. Yishai Aviram L; Dagan S; Hindi A; Chapman S; Gez R; Drug E Molecules; 2023 Nov; 28(23):. PubMed ID: 38067417 [TBL] [Abstract][Full Text] [Related]
4. Quantitative analysis of chemical warfare agent degradation products in beverages by liquid chromatography tandem mass spectrometry. Owens J; Koester C J Agric Food Chem; 2009 Sep; 57(18):8227-35. PubMed ID: 19685865 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents. Witkiewicz Z; Neffe S; Sliwka E; Quagliano J Crit Rev Anal Chem; 2018 Sep; 48(5):337-371. PubMed ID: 29533075 [TBL] [Abstract][Full Text] [Related]
6. Verification of exposure to chemical warfare agents through analysis of persistent biomarkers in plants. de Bruin-Hoegée M; Lamriti L; Langenberg JP; Olivier RCM; Chau LF; van der Schans MJ; Noort D; van Asten AC Anal Methods; 2023 Jan; 15(2):142-153. PubMed ID: 36524843 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Nerve Agent Metabolites from Hair for Long-Term Verification of Nerve Agent Exposure. Appel AS; McDonough JH; McMonagle JD; Logue BA Anal Chem; 2016 Jun; 88(12):6523-30. PubMed ID: 27161086 [TBL] [Abstract][Full Text] [Related]
8. Mass spectrometric analysis of chemical warfare agents and their degradation products in soil and synthetic samples. D'Agostino PA; Hancock JR; Chenier CL Eur J Mass Spectrom (Chichester); 2003; 9(6):609-18. PubMed ID: 15100471 [TBL] [Abstract][Full Text] [Related]
9. Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass spectrometry. D'Agostino PA; Chenier CL Rapid Commun Mass Spectrom; 2010 Jun; 24(11):1617-24. PubMed ID: 20486257 [TBL] [Abstract][Full Text] [Related]
10. Dry Blood Spot sample collection for post-exposure monitoring of chemical warfare agents - In vivo determination of phosphonic acids using LC-MS/MS. Yishai Aviram L; Magen M; Chapman S; Neufeld Cohen A; Lazar S; Dagan S J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Sep; 1093-1094():60-65. PubMed ID: 29990714 [TBL] [Abstract][Full Text] [Related]
11. Quantification of sarin and cyclosarin metabolites isopropyl methylphosphonic acid and cyclohexyl methylphosphonic acid in minipig plasma using isotope-dilution and liquid chromatography- time-of-flight mass spectrometry. Evans RA; Jakubowski EM; Muse WT; Matson K; Hulet SW; Mioduszewski RJ; Thomson SA; Totura AL; Renner JA; Crouse CL J Anal Toxicol; 2008; 32(1):78-85. PubMed ID: 18269798 [TBL] [Abstract][Full Text] [Related]
12. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer. Smith JN; Noll RJ; Cooks RG Rapid Commun Mass Spectrom; 2011 May; 25(10):1437-44. PubMed ID: 21504010 [TBL] [Abstract][Full Text] [Related]
13. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. Black RM; Clarke RJ; Read RW; Reid MT J Chromatogr A; 1994 Feb; 662(2):301-21. PubMed ID: 8143028 [TBL] [Abstract][Full Text] [Related]
14. Determination of sarin, soman and their hydrolysis products in soil by packed capillary liquid chromatography-electrospray mass spectrometry. D'Agostino PA; Hancock JR; Provost LR J Chromatogr A; 2001 Apr; 912(2):291-9. PubMed ID: 11330798 [TBL] [Abstract][Full Text] [Related]
15. Liquid chromatography electrospray tandem mass spectrometric and desorption electrospray ionization tandem mass spectrometric analysis of chemical warfare agents in office media typically collected during a forensic investigation. D'Agostino PA; Hancock JR; Chenier CL; Lepage CR J Chromatogr A; 2006 Mar; 1110(1-2):86-94. PubMed ID: 16480731 [TBL] [Abstract][Full Text] [Related]
16. Packed capillary liquid chromatography-electrospray mass spectrometry analysis of organophosphorus chemical warfare agents. D'Agostino PA; Hancock JR; Provost LR J Chromatogr A; 1999 Apr; 840(2):289-94. PubMed ID: 10343402 [TBL] [Abstract][Full Text] [Related]
17. Aqueous extraction followed by derivatization and liquid chromatography-mass spectrometry analysis: A unique strategy for trace detection and identification of G-nerve agents in environmental matrices. Weissberg A; Madmon M; Elgarisi M; Dagan S J Chromatogr A; 2018 Nov; 1577():24-30. PubMed ID: 30297234 [TBL] [Abstract][Full Text] [Related]
18. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants. Martin AN; Farquar GR; Frank M; Gard EE; Fergenson DP Anal Chem; 2007 Aug; 79(16):6368-75. PubMed ID: 17630721 [TBL] [Abstract][Full Text] [Related]
19. Determination of trace amounts of G-type nerve agents in aqueous samples utilizing "in vial" instantaneous derivatization and liquid chromatography-tandem mass spectrometry. Weissberg A; Madmon M; Elgarisi M; Dagan S J Chromatogr A; 2017 Aug; 1512():71-77. PubMed ID: 28712549 [TBL] [Abstract][Full Text] [Related]
20. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry. Steiner WE; Clowers BH; Haigh PE; Hill HH Anal Chem; 2003 Nov; 75(22):6068-76. PubMed ID: 14615983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]