These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35188779)

  • 1. Engineering Long-Lived Blue Photoluminescence from InP Quantum Dots Using Isomers of Naphthoic Acid.
    Zhang X; Hudson MH; Castellano FN
    J Am Chem Soc; 2022 Mar; 144(8):3527-3534. PubMed ID: 35188779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally Activated Bright-State Delayed Blue Photoluminescence from InP Quantum Dots.
    Zhang X; Castellano FN
    J Phys Chem Lett; 2022 Apr; 13(16):3706-3711. PubMed ID: 35439008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally Activated Delayed Photoluminescence: Deterministic Control of Excited-State Decay.
    Yonemoto DT; Papa CM; Mongin C; Castellano FN
    J Am Chem Soc; 2020 Jun; 142(25):10883-10893. PubMed ID: 32497428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triplet Sensitization and Photon Upconversion Using InP-Based Quantum Dots.
    Lai R; Sang Y; Zhao Y; Wu K
    J Am Chem Soc; 2020 Nov; 142(47):19825-19829. PubMed ID: 33170006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling Thermally Activated Delayed Photoluminescence in CdSe Quantum Dots through Triplet Acceptor Surface Coverage.
    Yonemoto DT; Papa CM; Sheykhi S; Castellano FN
    J Phys Chem Lett; 2021 Apr; 12(15):3718-3723. PubMed ID: 33835808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots.
    Mongin C; Moroz P; Zamkov M; Castellano FN
    Nat Chem; 2018 Feb; 10(2):225-230. PubMed ID: 29359748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation.
    Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J
    Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. InP Quantum Dots: Synthesis and Lighting Applications.
    Chen B; Li D; Wang F
    Small; 2020 Aug; 16(32):e2002454. PubMed ID: 32613755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Colloidal Blue-Emitting InP/ZnS Core/Shell Quantum Dots with the Assistance of Copper Cations.
    Huang F; Bi C; Guo R; Zheng C; Ning J; Tian J
    J Phys Chem Lett; 2019 Nov; 10(21):6720-6726. PubMed ID: 31549508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive Immunoassay Based on Biocompatible and Robust Silica-Coated Cd-Free InP-Based Quantum Dots.
    Xu Y; Lv Y; Wu R; Li J; Shen H; Yang H; Zhang H; Li LS
    Inorg Chem; 2021 May; 60(9):6503-6513. PubMed ID: 33847486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altering molecular photophysics by merging organic and inorganic chromophores.
    Castellano FN
    Acc Chem Res; 2015 Mar; 48(3):828-39. PubMed ID: 25646710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermally Activated Delayed Near-Infrared Photoluminescence from Functionalized Lead-Free Nanocrystals.
    He S; Du J; Liang W; Zhang B; Liang G; Wu K
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202217287. PubMed ID: 36517417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auger ionization beats photo-oxidation of semiconductor quantum dots: extended stability of single-molecule photoluminescence.
    Yamashita S; Hamada M; Nakanishi S; Saito H; Nosaka Y; Wakida S; Biju V
    Angew Chem Int Ed Engl; 2015 Mar; 54(13):3892-6. PubMed ID: 25728264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Photoconductive InP Quantum Dots Films and Solar Cells.
    Crisp RW; Kirkwood N; Grimaldi G; Kinge S; Siebbeles LDA; Houtepen AJ
    ACS Appl Energy Mater; 2018 Nov; 1(11):6569-6576. PubMed ID: 30506040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending the Near-Infrared Emission Range of Indium Phosphide Quantum Dots for Multiplexed
    Saeboe AM; Nikiforov AY; Toufanian R; Kays JC; Chern M; Casas JP; Han K; Piryatinski A; Jones D; Dennis AM
    Nano Lett; 2021 Apr; 21(7):3271-3279. PubMed ID: 33755481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands.
    Lee W; Lee C; Kim B; Choi Y; Chae H
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33143226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the Energy Gap between Band-Edge and Trap States Slows Down Picosecond Carrier Trapping in Highly Luminescent InP/ZnSe/ZnS Quantum Dots.
    Sung YM; Kim TG; Yun DJ; Lim M; Ko DS; Jung C; Won N; Park S; Jeon WS; Lee HS; Kim JH; Jun S; Sul S; Hwang S
    Small; 2021 Dec; 17(52):e2102792. PubMed ID: 34636144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red-to-blue photon upconversion based on a triplet energy transfer process not retarded but enabled by shell-coated quantum dots.
    Lai R; Wu K
    J Chem Phys; 2020 Sep; 153(11):114701. PubMed ID: 32962379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Brightness Blue InP Quantum Dot-Based Electroluminescent Devices: The Role of Shell Thickness.
    Zhang H; Ma X; Lin Q; Zeng Z; Wang H; Li LS; Shen H; Jia Y; Du Z
    J Phys Chem Lett; 2020 Feb; 11(3):960-967. PubMed ID: 31957438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. InP/ZnS Quantum Dots Cause Inflammatory Response in Macrophages Through Endoplasmic Reticulum Stress and Oxidative stress.
    Chen S; Chen Y; Chen Y; Yao Z
    Int J Nanomedicine; 2019; 14():9577-9586. PubMed ID: 31824152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.