These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35189205)

  • 1. Pyrolysis of cellulose: Correlation of hydrophilicity with evolution of functionality of biochar.
    Fan M; Li C; Shao Y; Zhang S; Gholizadeh M; Hu X
    Sci Total Environ; 2022 Jun; 825():153959. PubMed ID: 35189205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ characterization of functional groups of biochar in pyrolysis of cellulose.
    Fan M; Li C; Sun Y; Zhang L; Zhang S; Hu X
    Sci Total Environ; 2021 Dec; 799():149354. PubMed ID: 34364276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the functionalities and structures of biochar in pyrolysis of poplar in a wide temperature range.
    Zhang C; Zhang Z; Zhang L; Li Q; Li C; Chen G; Zhang S; Liu Q; Hu X
    Bioresour Technol; 2020 May; 304():123002. PubMed ID: 32078904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pyrolysis conditions on environmentally persistent free radicals (EPFRs) in biochar from co-pyrolysis of urea and cellulose.
    Bi D; Huang F; Jiang M; He Z; Lin X
    Sci Total Environ; 2022 Jan; 805():150339. PubMed ID: 34537697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis.
    Hassan M; Liu Y; Naidu R; Parikh SJ; Du J; Qi F; Willett IR
    Sci Total Environ; 2020 Nov; 744():140714. PubMed ID: 32717463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration.
    Nan H; Yin J; Yang F; Luo Y; Zhao L; Cao X
    Environ Pollut; 2021 Oct; 287():117566. PubMed ID: 34153610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on reaction mechanism of superior bamboo biochar catalyst production by molten alkali carbonates pyrolysis and its application for cellulose hydrolysis.
    Wei Y; Shen C; Xie J; Bu Q
    Sci Total Environ; 2020 Apr; 712():136435. PubMed ID: 31931213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccharide-derived microporous spherical biochar prepared from hydrothermal carbonization and different pyrolysis temperatures: synthesis, characterization, and application in water treatment.
    Tran HN; Lee CK; Nguyen TV; Chao HP
    Environ Technol; 2018 Nov; 39(21):2747-2760. PubMed ID: 28791934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism.
    Wang H; Wang X; Cui Y; Xue Z; Ba Y
    Bioresour Technol; 2018 Sep; 263():444-449. PubMed ID: 29772506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil.
    Mao J; Zhang K; Chen B
    Environ Pollut; 2019 Oct; 253():779-789. PubMed ID: 31349192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the dependence of biochar properties on different types of biomass.
    Gholizadeh M; Meca S; Zhang S; Clarens F; Hu X
    Waste Manag; 2024 Jun; 182():142-163. PubMed ID: 38653043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of biomass components, temperature and pressure on the pyrolysis behavior and biochar properties of pine nut shells.
    Qin L; Wu Y; Hou Z; Jiang E
    Bioresour Technol; 2020 Oct; 313():123682. PubMed ID: 32585452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar.
    Wei J; Tu C; Yuan G; Liu Y; Bi D; Xiao L; Lu J; Theng BKG; Wang H; Zhang L; Zhang X
    Environ Pollut; 2019 Aug; 251():56-65. PubMed ID: 31071633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Converting industrial waste cork to biochar as Cu (II) adsorbent via slow pyrolysis.
    Wang Q; Lai Z; Mu J; Chu D; Zang X
    Waste Manag; 2020 Mar; 105():102-109. PubMed ID: 32044548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar.
    Zhang X; Zhang P; Yuan X; Li Y; Han L
    Bioresour Technol; 2020 Jan; 296():122318. PubMed ID: 31675650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace metal elements mediated co-pyrolysis of biomass and bentonite for the synthesis of biochar with high stability.
    Yu J; Wu Z; An X; Tian F; Yu B
    Sci Total Environ; 2021 Jun; 774():145611. PubMed ID: 33607429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing fuel characteristics and combustion performance of cellulose-rich straws through CO
    Cui HM; Tian JY; Yu QF; Ma JF; Bian J; Li MF
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130417. PubMed ID: 38417744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic pyrolysis of biomass using fly ash leachate to increase carbon monoxide production and improve biochar properties to accelerate anaerobic digestion.
    Kobayashi T; Kuramochi H
    Bioresour Technol; 2023 Nov; 387():129583. PubMed ID: 37544544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar.
    Chen D; Yu X; Song C; Pang X; Huang J; Li Y
    Bioresour Technol; 2016 Oct; 218():1303-6. PubMed ID: 27481469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation.
    Song XD; Xue XY; Chen DZ; He PJ; Dai XH
    Chemosphere; 2014 Aug; 109():213-20. PubMed ID: 24582602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.