These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35189218)

  • 1. Evidence for multiple potential drivers of increased phosphorus in high-elevation lakes.
    Scholz J; Brahney J
    Sci Total Environ; 2022 Jun; 825():153939. PubMed ID: 35189218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.
    Kopáček J; Hejzlar J; Kaňa J; Norton SA; Stuchlík E
    Environ Sci Technol; 2015 Mar; 49(5):2895-903. PubMed ID: 25660534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change and Saharan dust drive recent cladoceran and primary production changes in remote alpine lakes of Sierra Nevada, Spain.
    Jiménez L; Rühland KM; Jeziorski A; Smol JP; Pérez-Martínez C
    Glob Chang Biol; 2018 Jan; 24(1):e139-e158. PubMed ID: 28833814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of phosphorus loading models to understand drivers of eutrophication in a complex rural lake-watershed system.
    Van Heyst A; A S; Jamieson R
    J Environ Manage; 2022 Jan; 302(Pt A):114010. PubMed ID: 34741948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrients and warming interact to force mountain lakes into unprecedented ecological states.
    Oleksy IA; Baron JS; Leavitt PR; Spaulding SA
    Proc Biol Sci; 2020 Jul; 287(1930):20200304. PubMed ID: 32635862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total phosphorus-precipitation and Chlorophyll a-phosphorus relationships of lakes and reservoirs mediated by soil iron at regional scale.
    Tang Q; Peng L; Yang Y; Lin Q; Qian SS; Han BP
    Water Res; 2019 May; 154():136-143. PubMed ID: 30782555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate Change and Nutrient Loading in the Western Lake Erie Basin: Warming Can Counteract a Wetter Future.
    Kalcic MM; Muenich RL; Basile S; Steiner AL; Kirchhoff C; Scavia D
    Environ Sci Technol; 2019 Jul; 53(13):7543-7550. PubMed ID: 31244082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Source contribution to phosphorus loads from the Maumee River watershed to Lake Erie.
    Kast JB; Apostel AM; Kalcic MM; Muenich RL; Dagnew A; Long CM; Evenson G; Martin JF
    J Environ Manage; 2021 Feb; 279():111803. PubMed ID: 33341725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and distribution of different phosphorus types in the agricultural areas of Daecheong Lake Watershed, South Korea.
    Choi H; Reyes NJ; Kim LH
    Environ Geochem Health; 2021 Nov; 43(11):4805-4817. PubMed ID: 34009497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bayesian modeling approach for phosphorus load apportionment in a reservoir with high water transfer disturbance.
    Liu X; Wang Y; Feng J; Chu C; Qiu Y; Xu Z; Li Z; Wang Y
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32395-32408. PubMed ID: 30229496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse effects of accelerating climate change on chemical recovery of alpine lakes from acidic deposition in soil-rich versus scree-rich catchments.
    Kopáček J; Kaňa J; Porcal P; Stuchlík E
    Environ Pollut; 2021 Sep; 284():117522. PubMed ID: 34261223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unexpected stasis in a changing world: Lake nutrient and chlorophyll trends since 1990.
    Oliver SK; Collins SM; Soranno PA; Wagner T; Stanley EH; Jones JR; Stow CA; Lottig NR
    Glob Chang Biol; 2017 Dec; 23(12):5455-5467. PubMed ID: 28834575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus?
    Jarvie HP; Neal C; Withers PJ
    Sci Total Environ; 2006 May; 360(1-3):246-53. PubMed ID: 16226299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eutrophication forcings on a peri-urban lake ecosystem: Context for integrated watershed to airshed management.
    Putt AE; MacIsaac EA; Herunter HE; Cooper AB; Selbie DT
    PLoS One; 2019; 14(7):e0219241. PubMed ID: 31339893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal dependence of chlorophyll a-nutrient relationships in Lake Taihu: Drivers and management implications.
    Zou W; Zhu G; Xu H; Zhu M; Zhang Y; Qin B
    J Environ Manage; 2022 Mar; 306():114476. PubMed ID: 35051816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus export by runoff from agricultural field plots with different crop cover in Lake Taihu watershed.
    Yan WJ; Huang MX; Zhang S; Tang YJ
    J Environ Sci (China); 2001 Oct; 13(4):502-7. PubMed ID: 11723941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eutrophication of aquatic ecosystems: bistability and soil phosphorus.
    Carpenter SR
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10002-5. PubMed ID: 15972805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus losses to water from lowland rice fields under rice-wheat double cropping system in the Tai Lake region.
    Cao ZH; Zhang HC
    Environ Geochem Health; 2004; 26(2-3):229-36. PubMed ID: 15499778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trophic state modeling for shallow freshwater reservoir: a new approach.
    Markad AT; Landge AT; Nayak BB; Inamdar AB; Mishra AK
    Environ Monit Assess; 2019 Aug; 191(9):586. PubMed ID: 31440835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical Stratification of Soil Phosphorus as a Concern for Dissolved Phosphorus Runoff in the Lake Erie Basin.
    Baker DB; Johnson LT; Confesor RB; Crumrine JP
    J Environ Qual; 2017 Nov; 46(6):1287-1295. PubMed ID: 29293833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.