These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35189244)

  • 21. Microbially mediated redox processes in natural analogues for radioactive waste.
    Haveman SA; Pedersen K
    J Contam Hydrol; 2002 Mar; 55(1-2):161-74. PubMed ID: 12000091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variations of uranium concentrations in a multi-aquifer system under the impact of surface water-groundwater interaction.
    Wu Y; Li J; Wang Y; Xie X
    J Contam Hydrol; 2018 Apr; 211():65-76. PubMed ID: 29559163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uranium in groundwater - The importance of hydraulic regime and groundwater flow system's understanding.
    Erőss A; Csondor K; Izsák B; Vargha M; Horváth Á; Pándics T
    J Environ Radioact; 2018 Dec; 195():90-96. PubMed ID: 30317029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge.
    Tapia-Rodriguez A; Luna-Velasco A; Field JA; Sierra-Alvarez R
    Water Res; 2010 Apr; 44(7):2153-62. PubMed ID: 20060558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling evaluation of the impact of residual source material on remedial time frame at a former uranium mill site.
    Kent RD; Johnson RH; Laase AD; Nyman JL
    J Contam Hydrol; 2024 Feb; 261():104298. PubMed ID: 38242064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variation of groundwater and mineral composition of in situ leaching uranium in Bayanwula mining area, China.
    Li H; Muhammad AM; Tang Z
    PLoS One; 2024; 19(7):e0303595. PubMed ID: 38995911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Natural Attenuation of Groundwater Uranium in Post-Neutral-Mining Sites Evidenced from Multiple Isotopes and Dissolved Organic Matter.
    Lu C; Xiu W; Yang B; Zhang H; Lian G; Zhang T; Bi E; Guo H
    Environ Sci Technol; 2024 Jul; 58(28):12674-12684. PubMed ID: 38965983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactive transport model of uranium by CO
    Zhang H; Zhang T; He Y
    Environ Sci Pollut Res Int; 2023 May; 30(24):65976-65989. PubMed ID: 37093393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ground water contamination with (238)U, (234)U, (235)U, (226)Ra and (210)Pb from past uranium mining: cove wash, Arizona.
    Dias da Cunha KM; Henderson H; Thomson BM; Hecht AA
    Environ Geochem Health; 2014 Jun; 36(3):477-87. PubMed ID: 24135898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Groundwater chemistry of the Okélobondo uraninite deposit area (Oklo, Gabon): two-dimensional reactive transport modelling.
    Salas J; Ayora C
    J Contam Hydrol; 2004 Mar; 69(1-2):115-37. PubMed ID: 14972440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Field experiments of surface water to groundwater recharge to characterize the mobility of uranium and vanadium at a former mill tailing site.
    Paradis CJ; Johnson RH; Tigar AD; Sauer KB; Marina OC; Reimus PW
    J Contam Hydrol; 2020 Feb; 229():103581. PubMed ID: 31810750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments.
    Bone SE; Cliff J; Weaver K; Takacs CJ; Roycroft S; Fendorf S; Bargar JR
    Environ Sci Technol; 2020 Feb; 54(3):1493-1502. PubMed ID: 31886668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uranium levels in Cypriot groundwater samples determined by ICP-MS and α-spectroscopy.
    Charalambous C; Aletrari M; Piera P; Nicolaidou-Kanari P; Efstathiou M; Pashalidis I
    J Environ Radioact; 2013 Feb; 116():187-92. PubMed ID: 23195433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The removal of uranium from mining waste water using algal/microbial biomass.
    Kalin M; Wheeler WN; Meinrath G
    J Environ Radioact; 2005; 78(2):151-77. PubMed ID: 15511557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Establishing a geochemical heterogeneity model for a contaminated vadose zone--aquifer system.
    Murray CJ; Zachara JM; McKinley JP; Ward A; Bott YJ; Draper K; Moore D
    J Contam Hydrol; 2013 Oct; 153():122-40. PubMed ID: 23664489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution and potential health risk of groundwater uranium in Korea.
    Shin W; Oh J; Choung S; Cho BW; Lee KS; Yun U; Woo NC; Kim HK
    Chemosphere; 2016 Nov; 163():108-115. PubMed ID: 27522182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA.
    Ruedig E; Johnson TE
    J Environ Radioact; 2015 Dec; 150():170-8. PubMed ID: 26327367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of saline groundwater at Horonobe, Hokkaido, Japan by SEC-UV-ICP-MS: speciation of uranium and iodine.
    Kozai N; Ohnuki T; Iwatsuki T
    Water Res; 2013 Mar; 47(4):1570-84. PubMed ID: 23295069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organic complexation of U(VI) in reducing soils at a natural analogue site: Implications for uranium transport.
    Fuller AJ; Leary P; Gray ND; Davies HS; Mosselmans JFW; Cox F; Robinson CH; Pittman JK; McCann CM; Muir M; Graham MC; Utsunomiya S; Bower WR; Morris K; Shaw S; Bots P; Livens FR; Law GTW
    Chemosphere; 2020 Sep; 254():126859. PubMed ID: 32957279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.