BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 35189266)

  • 1. Merging data curation and machine learning to improve nanomedicines.
    Chen C; Yaari Z; Apfelbaum E; Grodzinski P; Shamay Y; Heller DA
    Adv Drug Deliv Rev; 2022 Apr; 183():114172. PubMed ID: 35189266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoinformatics for biomedicine: emerging approaches and applications.
    Liu X; Webster TJ
    Int J Nanomedicine; 2013; 8 Suppl 1(Suppl 1):1-5. PubMed ID: 24101873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial intelligence to bring nanomedicine to life.
    Serov N; Vinogradov V
    Adv Drug Deliv Rev; 2022 May; 184():114194. PubMed ID: 35283223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine.
    Singh AV; Ansari MHD; Rosenkranz D; Maharjan RS; Kriegel FL; Gandhi K; Kanase A; Singh R; Laux P; Luch A
    Adv Healthc Mater; 2020 Sep; 9(17):e1901862. PubMed ID: 32627972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial intelligence aids in development of nanomedicines for cancer management.
    Tan P; Chen X; Zhang H; Wei Q; Luo K
    Semin Cancer Biol; 2023 Feb; 89():61-75. PubMed ID: 36682438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-driving laboratories: A paradigm shift in nanomedicine development.
    Hickman RJ; Bannigan P; Bao Z; Aspuru-Guzik A; Allen C
    Matter; 2023 Apr; 6(4):1071-1081. PubMed ID: 37020832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoinformatics Revolutionizes Personalized Cancer Therapy.
    Sadan T; Cormode DP; Popovtzer R
    Trends Cancer; 2018 Jun; 4(6):397-399. PubMed ID: 29860981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations.
    Yan X; Sedykh A; Wang W; Yan B; Zhu H
    Nat Commun; 2020 May; 11(1):2519. PubMed ID: 32433469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-envisioning the design of nanomedicines: harnessing automation and artificial intelligence.
    Zaslavsky J; Bannigan P; Allen C
    Expert Opin Drug Deliv; 2023 Feb; 20(2):241-257. PubMed ID: 36644850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Nanomaterial Data Curation Initiative: A collaborative approach to assessing, evaluating, and advancing the state of the field.
    Hendren CO; Powers CM; Hoover MD; Harper SL
    Beilstein J Nanotechnol; 2015; 6():1752-62. PubMed ID: 26425427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A concise review: the synergy between artificial intelligence and biomedical nanomaterials that empowers nanomedicine.
    Hayat H; Nukala A; Nyamira A; Fan J; Wang P
    Biomed Mater; 2021 Aug; 16(5):. PubMed ID: 34280907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowledge Gaps in Generating Cell-Based Drug Delivery Systems and a Possible Meeting with Artificial Intelligence.
    Mozafari N; Mozafari N; Dehshahri A; Azadi A
    Mol Pharm; 2023 Aug; 20(8):3757-3778. PubMed ID: 37428824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical translation of nanomedicine with integrated digital medicine and machine learning interventions.
    Ahmad F; Muhmood T
    Colloids Surf B Biointerfaces; 2024 Jun; 241():114041. PubMed ID: 38897022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review.
    Singh AV; Varma M; Laux P; Choudhary S; Datusalia AK; Gupta N; Luch A; Gandhi A; Kulkarni P; Nath B
    Arch Toxicol; 2023 Apr; 97(4):963-979. PubMed ID: 36878992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle Property Characterization and Data Curation for Effective Powder Property Modeling in the Pharmaceutical Industry.
    Wadams RC; Akseli I; Albrecht J; Ferreira AP; Gamble JF; Leane M; Thomas S; Schuman Y; Taylor L; Tobyn M
    AAPS PharmSciTech; 2022 Oct; 23(8):286. PubMed ID: 36261755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data Analytics Approach for Rational Design of Nanomedicines with Programmable Drug Release.
    Mullis AS; Broderick SR; Binnebose AM; Peroutka-Bigus N; Bellaire BH; Rajan K; Narasimhan B
    Mol Pharm; 2019 May; 16(5):1917-1928. PubMed ID: 30973741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Machine Learning in Centralized Authorization Process of Nanomedicines in European Union.
    Santana R; Onieva E; Zuluaga R; Duardo-Sánchez A; Gañán P
    Curr Top Med Chem; 2021; 21(9):828-838. PubMed ID: 33745436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches.
    Lin Z; Chou WC; Cheng YH; He C; Monteiro-Riviere NA; Riviere JE
    Int J Nanomedicine; 2022; 17():1365-1379. PubMed ID: 35360005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends and patterns in cancer nanotechnology research: A survey of NCI's caNanoLab and nanotechnology characterization laboratory.
    Ke W; Crist RM; Clogston JD; Stern ST; Dobrovolskaia MA; Grodzinski P; Jensen MA
    Adv Drug Deliv Rev; 2022 Dec; 191():114591. PubMed ID: 36332724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthodontics in the era of big data analytics.
    Allareddy V; Rengasamy Venugopalan S; Nalliah RP; Caplin JL; Lee MK; Allareddy V
    Orthod Craniofac Res; 2019 May; 22 Suppl 1():8-13. PubMed ID: 31074158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.