BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35189368)

  • 1. Maturyoshka: A maturase inside a maturase, and other peculiarities of the novel chloroplast genomes of marine euglenophytes.
    Maciszewski K; Dabbagh N; Preisfeld A; Karnkowska A
    Mol Phylogenet Evol; 2022 May; 170():107441. PubMed ID: 35189368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of plant mitochondrial intron-encoded maturases: frequent lineage-specific loss and recurrent intracellular transfer to the nucleus.
    Guo W; Mower JP
    J Mol Evol; 2013 Aug; 77(1-2):43-54. PubMed ID: 23979261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic evolution of inverted repeats in Euglenophyta plastid genomes.
    Karnkowska A; Bennett MS; Triemer RE
    Sci Rep; 2018 Oct; 8(1):16071. PubMed ID: 30375469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organellar maturases: A window into the evolution of the spliceosome.
    Schmitz-Linneweber C; Lampe MK; Sultan LD; Ostersetzer-Biran O
    Biochim Biophys Acta; 2015 Sep; 1847(9):798-808. PubMed ID: 25626174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel loss of plastid introns and their maturase in the genus Cuscuta.
    McNeal JR; Kuehl JV; Boore JL; Leebens-Mack J; dePamphilis CW
    PLoS One; 2009 Jun; 4(6):e5982. PubMed ID: 19543388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns.
    Kwon EC; Kim JH; Kim NS
    Genes Genomics; 2020 May; 42(5):553-570. PubMed ID: 32200544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses.
    Záhonová K; Füssy Z; Birčák E; Novák Vanclová AMG; Klimeš V; Vesteg M; Krajčovič J; Oborník M; Eliáš M
    Sci Rep; 2018 Nov; 8(1):17012. PubMed ID: 30451959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids.
    Hrdá Š; Fousek J; Szabová J; Hampl V; Vlček Č
    PLoS One; 2012; 7(3):e33746. PubMed ID: 22448269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome.
    Pombert JF; James ER; Janouškovec J; Keeling PJ
    PLoS One; 2012; 7(12):e53433. PubMed ID: 23300929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A maturase-encoding group III twintron is conserved in deeply rooted euglenoid species: are group III introns the chicken or the egg?
    Doetsch NA; Thompson MD; Hallick RB
    Mol Biol Evol; 1998 Jan; 15(1):76-86. PubMed ID: 9491607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids.
    Jackson C; Knoll AH; Chan CX; Verbruggen H
    Sci Rep; 2018 Jan; 8(1):1523. PubMed ID: 29367699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids.
    Maruyama S; Suzaki T; Weber AP; Archibald JM; Nozaki H
    BMC Evol Biol; 2011 Apr; 11():105. PubMed ID: 21501489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent horizontal intron transfer to a chloroplast genome.
    Sheveleva EV; Hallick RB
    Nucleic Acids Res; 2004; 32(2):803-10. PubMed ID: 14762207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloroplast genome expansion by intron multiplication in the basal psychrophilic euglenoid
    Dabbagh N; Bennett MS; Triemer RE; Preisfeld A
    PeerJ; 2017; 5():e3725. PubMed ID: 28852596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary origin of a plant mitochondrial group II intron from a reverse transcriptase/maturase-encoding ancestor.
    Ahlert D; Piepenburg K; Kudla J; Bock R
    J Plant Res; 2006 Jul; 119(4):363-71. PubMed ID: 16763758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers.
    Janouškovec J; Liu SL; Martone PT; Carré W; Leblanc C; Collén J; Keeling PJ
    PLoS One; 2013; 8(3):e59001. PubMed ID: 23536846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracing patterns of chloroplast evolution in euglenoids: contributions from Colacium vesiculosum and Strombomonas acuminata (Euglenophyta).
    Wiegert KE; Bennett MS; Triemer RE
    J Eukaryot Microbiol; 2013; 60(2):214-21. PubMed ID: 23351081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent Size Expansions and Intron Proliferation in Red Algal Plastid and Mitochondrial Genomes.
    van Beveren F; Eme L; López-García P; Ciobanu M; Moreira D
    Genome Biol Evol; 2022 Apr; 14(4):. PubMed ID: 35289373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organellar Introns in Fungi, Algae, and Plants.
    Mukhopadhyay J; Hausner G
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The New Red Algal Subphylum Proteorhodophytina Comprises the Largest and Most Divergent Plastid Genomes Known.
    Muñoz-Gómez SA; Mejía-Franco FG; Durnin K; Colp M; Grisdale CJ; Archibald JM; Slamovits CH
    Curr Biol; 2017 Jun; 27(11):1677-1684.e4. PubMed ID: 28528908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.