BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35189409)

  • 1. A rapid and label-free platform for virus enrichment based on electrostatic microfluidics.
    Zhou X; Li Z; Zhang Z; Zhu L; Liu Q
    Talanta; 2022 May; 242():122989. PubMed ID: 35189409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple and label-free pathogen enrichment via homobifunctional imidoesters using a microfluidic (SLIM) system for ultrasensitive pathogen detection in various clinical specimens.
    Jin CE; Koo B; Lee EY; Kim JY; Kim SH; Shin Y
    Biosens Bioelectron; 2018 Jul; 111():66-73. PubMed ID: 29653418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system.
    Lien KY; Lin JL; Liu CY; Lei HY; Lee GB
    Lab Chip; 2007 Jul; 7(7):868-75. PubMed ID: 17594006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic potential wells for on-demand drop manipulation in microchannels.
    de Ruiter R; Pit AM; de Oliveira VM; Duits MH; van den Ende D; Mugele F
    Lab Chip; 2014 Mar; 14(5):883-91. PubMed ID: 24394887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced enrichment of collected airborne coronavirus and influenza virus samples via a ConA-coated microfluidic chip for PCR detection.
    Piri A; Hyun KA; Jung HI; Nam KS; Hwang J
    J Hazard Mater; 2024 Mar; 465():133249. PubMed ID: 38154189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic enrichment platform with a recombinase polymerase amplification sensor for pathogen diagnosis.
    Dao TNT; Lee EY; Koo B; Jin CE; Lee TY; Shin Y
    Anal Biochem; 2018 Mar; 544():87-92. PubMed ID: 29289485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Electrostatic, Hindrance and Diffusive Effects for Predicting Particle Transport and Separation Efficiency in Deterministic Lateral Displacement Microfluidic Devices.
    Biagioni V; Balestrieri G; Adrover A; Cerbelli S
    Biosensors (Basel); 2020 Sep; 10(9):. PubMed ID: 32947949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.
    Hsieh K; Ferguson BS; Eisenstein M; Plaxco KW; Soh HT
    Acc Chem Res; 2015 Apr; 48(4):911-20. PubMed ID: 25785632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection.
    Arshavsky-Graham S; Enders A; Ackerman S; Bahnemann J; Segal E
    Mikrochim Acta; 2021 Feb; 188(3):67. PubMed ID: 33543321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structure-free digital microfluidic platform for detection of influenza a virus by using magnetic beads and electromagnetic forces.
    Lu PH; Ma YD; Fu CY; Lee GB
    Lab Chip; 2020 Feb; 20(4):789-797. PubMed ID: 31956865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High enrichment and near real-time quantification of airborne viruses using a wet-paper-based electrochemical immunosensor under an electrostatic field.
    Bhardwaj J; Ngo ND; Lee J; Jang J
    J Hazard Mater; 2023 Jan; 442():130006. PubMed ID: 36162308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic charging and control of droplets in microfluidic devices.
    Zhou H; Yao S
    Lab Chip; 2013 Mar; 13(5):962-9. PubMed ID: 23338121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes.
    Zhong J; Liang M; Ai Y
    Lab Chip; 2021 Aug; 21(15):2869-2880. PubMed ID: 34236057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rapid and label-free platform for virus capture and identification from clinical samples.
    Yeh YT; Gulino K; Zhang Y; Sabestien A; Chou TW; Zhou B; Lin Z; Albert I; Lu H; Swaminathan V; Ghedin E; Terrones M
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):895-901. PubMed ID: 31882450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Portable Battery-Driven Microfluidic Cell Separation Instrument with Multiple Operational Modes.
    Xiang N; Ni Z
    Anal Chem; 2022 Dec; 94(48):16813-16820. PubMed ID: 36417752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and deformation of droplets in a microdevice using dielectrophoresis.
    Singh P; Aubry N
    Electrophoresis; 2007 Feb; 28(4):644-57. PubMed ID: 17304498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry.
    de Bruijn DS; Jorissen KFA; Olthuis W; van den Berg A
    Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial microfluidics for high-throughput cell analysis and detection: a review.
    Zhou Z; Chen Y; Zhu S; Liu L; Ni Z; Xiang N
    Analyst; 2021 Oct; 146(20):6064-6083. PubMed ID: 34490431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transverse field effects on DNA-sized particle dynamics.
    Tsutsui M; Taniguchi M; Kawai T
    Nano Lett; 2009 Apr; 9(4):1659-62. PubMed ID: 19256477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.