These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 35190129)
21. A surface-enhanced Raman scattering method for detection of trace glutathione on the basis of immobilized silver nanoparticles and crystal violet probe. Ouyang L; Zhu L; Jiang J; Tang H Anal Chim Acta; 2014 Mar; 816():41-9. PubMed ID: 24580853 [TBL] [Abstract][Full Text] [Related]
22. Rough surface Au@Ag core-shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors. Fu Q; Liu HL; Wu Z; Liu A; Yao C; Li X; Xiao W; Yu S; Luo Z; Tang Y J Nanobiotechnology; 2015 Nov; 13():81. PubMed ID: 26577252 [TBL] [Abstract][Full Text] [Related]
23. Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions. Huang GG; Han XX; Hossain MK; Ozaki Y Anal Chem; 2009 Jul; 81(14):5881-8. PubMed ID: 19518138 [TBL] [Abstract][Full Text] [Related]
24. A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite. Xie Y; Li Y; Niu L; Wang H; Qian H; Yao W Talanta; 2012 Oct; 100():32-7. PubMed ID: 23141308 [TBL] [Abstract][Full Text] [Related]
25. [Surface-enhanced Raman spectroscopic analysis of uric acid]. Feng S; Lin D; Li Y; Huang Z; Wu Y; Wang Y; Lin J; Chen R Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Jun; 29(3):541-5. PubMed ID: 22826955 [TBL] [Abstract][Full Text] [Related]
26. Photochemical decoration of magnetic composites with silver nanostructures for determination of creatinine in urine by surface-enhanced Raman spectroscopy. Alula MT; Yang J Talanta; 2014 Dec; 130():55-62. PubMed ID: 25159379 [TBL] [Abstract][Full Text] [Related]
27. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Li F; Wang J; Lai Y; Wu C; Sun S; He Y; Ma H Biosens Bioelectron; 2013 Jan; 39(1):82-7. PubMed ID: 22840330 [TBL] [Abstract][Full Text] [Related]
28. Double Detection of Mycotoxins Based on SERS Labels Embedded Ag@Au Core-Shell Nanoparticles. Zhao Y; Yang Y; Luo Y; Yang X; Li M; Song Q ACS Appl Mater Interfaces; 2015 Oct; 7(39):21780-6. PubMed ID: 26381109 [TBL] [Abstract][Full Text] [Related]
29. A simple and sensitive SERS quantitative analysis method for urea using the dimethylglyoxime product as molecular probes in nanosilver sol substrate. Liang A; Wang H; Yao D; Jiang Z Food Chem; 2019 Jan; 271():39-46. PubMed ID: 30236692 [TBL] [Abstract][Full Text] [Related]
30. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe. Li C; Ouyang H; Tang X; Wen G; Liang A; Jiang Z Biosens Bioelectron; 2017 Jan; 87():888-893. PubMed ID: 27662583 [TBL] [Abstract][Full Text] [Related]
31. Galvanic displacement-induced codeposition of reduced-graphene-oxide/silver on alloy fibers for non-destructive SPME@SERS analysis of antibiotics. Cui J; Chen S; Ma X; Shao H; Zhan J Mikrochim Acta; 2018 Dec; 186(1):19. PubMed ID: 30552513 [TBL] [Abstract][Full Text] [Related]
32. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972 [TBL] [Abstract][Full Text] [Related]
33. Electrospun nanofibrous membranes surface-decorated with silver nanoparticles as flexible and active/sensitive substrates for surface-enhanced Raman scattering. Zhang L; Gong X; Bao Y; Zhao Y; Xi M; Jiang C; Fong H Langmuir; 2012 Oct; 28(40):14433-40. PubMed ID: 22974488 [TBL] [Abstract][Full Text] [Related]
34. Synergistic effect between silver nanoparticles and antifungal agents on Candida albicans revealed by dynamic surface-enhanced Raman spectroscopy. Li H; Wang L; Chai Y; Cao Y; Lu F Nanotoxicology; 2018 Dec; 12(10):1230-1240. PubMed ID: 30501538 [TBL] [Abstract][Full Text] [Related]
37. Two orders of magnitude extra SERS enhancement on silver nanoparticle-based substrate induced by laser irradiation in nitrogen ambient. Jin C; Chen J; Du Z; Liu C; Liu F; Hu J; Han M Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120372. PubMed ID: 34530198 [TBL] [Abstract][Full Text] [Related]
38. Development of a filter-based method for detecting silver nanoparticles and their heteroaggregation in aqueous environments by surface-enhanced Raman spectroscopy. Guo H; Xing B; He L Environ Pollut; 2016 Apr; 211():198-205. PubMed ID: 26774766 [TBL] [Abstract][Full Text] [Related]
39. Preparation of silver nanoparticles coated ZnO/Fe Alula MT; Lemmens P; Bo L; Wulferding D; Yang J; Spende H Anal Chim Acta; 2019 Sep; 1073():62-71. PubMed ID: 31146837 [TBL] [Abstract][Full Text] [Related]
40. A novel strategy for rapid detection of bacteria in water by the combination of three-dimensional surface-enhanced Raman scattering (3D SERS) and laser induced breakdown spectroscopy (LIBS). Liao W; Lin Q; Xie S; He Y; Tian Y; Duan Y Anal Chim Acta; 2018 Dec; 1043():64-71. PubMed ID: 30392670 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]