BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 35190267)

  • 1. Characterizing human mesenchymal stromal cells' immune-modulatory potency using targeted lipidomic profiling of sphingolipids.
    DeVeaux SA; Ogle ME; Vyshnya S; Chiappa NF; Leitmann B; Rudy R; Day A; Mortensen LJ; Kurtzberg J; Roy K; Botchwey EA
    Cytotherapy; 2022 Jun; 24(6):608-618. PubMed ID: 35190267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potency testing of mesenchymal stromal cell growth expanded in human platelet lysate from different human tissues.
    Fazzina R; Iudicone P; Fioravanti D; Bonanno G; Totta P; Zizzari IG; Pierelli L
    Stem Cell Res Ther; 2016 Aug; 7(1):122. PubMed ID: 27557940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Mesenchymal Stromal Cells Isolated from Murine Adipose Tissue and Bone Marrow in the Treatment of Spinal Cord Injury.
    Takahashi A; Nakajima H; Uchida K; Takeura N; Honjoh K; Watanabe S; Kitade M; Kokubo Y; Johnson WEB; Matsumine A
    Cell Transplant; 2018 Jul; 27(7):1126-1139. PubMed ID: 29947256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive characterisation of large-scale expanded human bone marrow and umbilical cord mesenchymal stem cells.
    Mennan C; Garcia J; Roberts S; Hulme C; Wright K
    Stem Cell Res Ther; 2019 Mar; 10(1):99. PubMed ID: 30885254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pancreas-derived mesenchymal stromal cells share immune response-modulating and angiogenic potential with bone marrow mesenchymal stromal cells and can be grown to therapeutic scale under Good Manufacturing Practice conditions.
    Thirlwell KL; Colligan D; Mountford JC; Samuel K; Bailey L; Cuesta-Gomez N; Hewit KD; Kelly CJ; West CC; McGowan NWA; Casey JJ; Graham GJ; Turner ML; Forbes S; Campbell JDM
    Cytotherapy; 2020 Dec; 22(12):762-771. PubMed ID: 32828673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harmonised culture procedures minimise but do not eliminate mesenchymal stromal cell donor and tissue variability in a decentralised multicentre manufacturing approach.
    Calcat-I-Cervera S; Rendra E; Scaccia E; Amadeo F; Hanson V; Wilm B; Murray P; O'Brien T; Taylor A; Bieback K
    Stem Cell Res Ther; 2023 May; 14(1):120. PubMed ID: 37143116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression.
    Stanko P; Kaiserova K; Altanerova V; Altaner C
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2014 Sep; 158(3):373-7. PubMed ID: 24145770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton's jelly as sources of cell immunomodulatory therapy.
    Wang Q; Yang Q; Wang Z; Tong H; Ma L; Zhang Y; Shan F; Meng Y; Yuan Z
    Hum Vaccin Immunother; 2016; 12(1):85-96. PubMed ID: 26186552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.
    Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA
    Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.
    Russell KA; Chow NH; Dukoff D; Gibson TW; LaMarre J; Betts DH; Koch TG
    PLoS One; 2016; 11(12):e0167442. PubMed ID: 27907211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of the immunomodulatory capacities of human bone marrow- and adipose tissue-derived mesenchymal stromal cells from the same donor.
    Valencia J; Blanco B; Yáñez R; Vázquez M; Herrero Sánchez C; Fernández-García M; Rodríguez Serrano C; Pescador D; Blanco JF; Hernando-Rodríguez M; Sánchez-Guijo F; Lamana ML; Segovia JC; Vicente Á; Del Cañizo C; Zapata AG
    Cytotherapy; 2016 Oct; 18(10):1297-311. PubMed ID: 27637760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic Heterogeneity of Human Mesenchymal Stem Cells Derived from Bone Marrow, Dental Pulp, Adipose Tissue, and Umbilical Cord.
    Zhu X; Xu X; Shen M; Wang Y; Zheng T; Li H; Wang X; Meng J
    Cell Reprogram; 2023 Aug; 25(4):162-170. PubMed ID: 37384924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolomics and cytokine profiling of mesenchymal stromal cells identify markers predictive of T-cell suppression.
    Maughon TS; Shen X; Huang D; Michael AOA; Shockey WA; Andrews SH; McRae JM; Platt MO; Fernández FM; Edison AS; Stice SL; Marklein RA
    Cytotherapy; 2022 Feb; 24(2):137-148. PubMed ID: 34696960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory-compliant conditions during cell product manufacturing enhance in vitro immunomodulatory properties of infrapatellar fat pad-derived mesenchymal stem/stromal cells.
    Kouroupis D; Bowles AC; Greif DN; Leñero C; Best TM; Kaplan LD; Correa D
    Cytotherapy; 2020 Nov; 22(11):677-689. PubMed ID: 32723596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue.
    Rebelatto CK; Aguiar AM; Moretão MP; Senegaglia AC; Hansen P; Barchiki F; Oliveira J; Martins J; Kuligovski C; Mansur F; Christofis A; Amaral VF; Brofman PS; Goldenberg S; Nakao LS; Correa A
    Exp Biol Med (Maywood); 2008 Jul; 233(7):901-13. PubMed ID: 18445775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standardized xeno- and serum-free culture platform enables large-scale expansion of high-quality mesenchymal stem/stromal cells from perinatal and adult tissue sources.
    Hoang VT; Trinh QM; Phuong DTM; Bui HTH; Hang LM; Ngan NTH; Anh NTT; Nhi PY; Nhung TTH; Lien HT; Nguyen TD; Thanh LN; Hoang DM
    Cytotherapy; 2021 Jan; 23(1):88-99. PubMed ID: 33097415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.
    Heo JS; Choi Y; Kim HS; Kim HO
    Int J Mol Med; 2016 Jan; 37(1):115-25. PubMed ID: 26719857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducible indoleamine 2,3-dioxygenase 1 and programmed death ligand 1 expression as the potency marker for mesenchymal stromal cells.
    Guan Q; Li Y; Shpiruk T; Bhagwat S; Wall DA
    Cytotherapy; 2018 May; 20(5):639-649. PubMed ID: 29548707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preconditioning with interleukin-1 beta and interferon-gamma enhances the efficacy of human umbilical cord blood-derived mesenchymal stem cells-based therapy via enhancing prostaglandin E2 secretion and indoleamine 2,3-dioxygenase activity in dextran sulfate sodium-induced colitis.
    Yu Y; Yoo SM; Park HH; Baek SY; Kim YJ; Lee S; Kim YL; Seo KW; Kang KS
    J Tissue Eng Regen Med; 2019 Oct; 13(10):1792-1804. PubMed ID: 31293088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RIA fractions contain mesenchymal stroma cells with high osteogenic potency.
    Kuehlfluck P; Moghaddam A; Helbig L; Child C; Wildemann B; Schmidmaier G;
    Injury; 2015 Dec; 46 Suppl 8():S23-32. PubMed ID: 26747914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.