These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35190543)

  • 1. Cryo-EM structures of human p97 double hexamer capture potentiated ATPase-competent state.
    Gao H; Li F; Ji Z; Shi Z; Li Y; Yu H
    Cell Discov; 2022 Feb; 8(1):19. PubMed ID: 35190543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward an understanding of the Cdc48/p97 ATPase.
    Bodnar N; Rapoport T
    F1000Res; 2017; 6():1318. PubMed ID: 28815021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding.
    Twomey EC; Ji Z; Wales TE; Bodnar NO; Ficarro SB; Marto JA; Engen JR; Rapoport TA
    Science; 2019 Aug; 365(6452):. PubMed ID: 31249135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Mechanism of Substrate Processing by the Cdc48 ATPase Complex.
    Bodnar NO; Rapoport TA
    Cell; 2017 May; 169(4):722-735.e9. PubMed ID: 28475898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translocation of polyubiquitinated protein substrates by the hexameric Cdc48 ATPase.
    Ji Z; Li H; Peterle D; Paulo JA; Ficarro SB; Wales TE; Marto JA; Gygi SP; Engen JR; Rapoport TA
    Mol Cell; 2022 Feb; 82(3):570-584.e8. PubMed ID: 34951965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4.
    Bodnar NO; Kim KH; Ji Z; Wales TE; Svetlov V; Nudler E; Engen JR; Walz T; Rapoport TA
    Nat Struct Mol Biol; 2018 Jul; 25(7):616-622. PubMed ID: 29967539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication.
    Barthelme D; Jauregui R; Sauer RT
    Protein Sci; 2015 Sep; 24(9):1521-7. PubMed ID: 26134898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active conformation of the p97-p47 unfoldase complex.
    Xu Y; Han H; Cooney I; Guo Y; Moran NG; Zuniga NR; Price JC; Hill CP; Shen PS
    Nat Commun; 2022 May; 13(1):2640. PubMed ID: 35552390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of ubiquitin-independent PP1 complex disassembly by p97.
    van den Boom J; Marini G; Meyer H; Saibil HR
    EMBO J; 2023 Jul; 42(14):e113110. PubMed ID: 37264685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Division of labor between the pore-1 loops of the D1 and D2 AAA+ rings coordinates substrate selectivity of the ClpAP protease.
    Zuromski KL; Kim S; Sauer RT; Baker TA
    J Biol Chem; 2021 Dec; 297(6):101407. PubMed ID: 34780718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of transient binding and release of substrate protein during the allosteric cycle of the p97 nanomachine.
    Tonddast-Navaei S; Stan G
    J Am Chem Soc; 2013 Oct; 135(39):14627-36. PubMed ID: 24007343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved L464 in p97 D1-D2 linker is critical for p97 cofactor regulated ATPase activity.
    Zhang X; Gui L; Li S; Nandi P; Columbres RC; Wong DE; Moen DR; Lin HJ; Chiu PL; Chou TF
    Biochem J; 2021 Sep; 478(17):3185-3204. PubMed ID: 34405853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains.
    Ye Y; Meyer HH; Rapoport TA
    J Cell Biol; 2003 Jul; 162(1):71-84. PubMed ID: 12847084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The p97/VCP adaptor UBXD1 drives AAA+ remodeling and ring opening through multi-domain tethered interactions.
    Braxton JR; Altobelli CR; Tucker MR; Tse E; Thwin AC; Arkin MR; Southworth DR
    Nat Struct Mol Biol; 2023 Dec; 30(12):2009-2019. PubMed ID: 37945741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide-dependent conformational changes of the AAA+ ATPase p97 revisited.
    Schuller JM; Beck F; Lössl P; Heck AJ; Förster F
    FEBS Lett; 2016 Mar; 590(5):595-604. PubMed ID: 26849035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting of client proteins to the VCP/p97/Cdc48 unfolding machine.
    Meyer H; van den Boom J
    Front Mol Biosci; 2023; 10():1142989. PubMed ID: 36825201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryo-EM structure of dodecamer human p97 in complex with NMS-873 reveals S
    Liu S; Ye X; Liu W; Liu L; Li D; Lin Q; Wang T
    Biochem Biophys Res Commun; 2022 Apr; 601():146-152. PubMed ID: 35247768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Mighty "Protein Extractor" of the Cell: Structure and Function of the p97/CDC48 ATPase.
    Ye Y; Tang WK; Zhang T; Xia D
    Front Mol Biosci; 2017; 4():39. PubMed ID: 28660197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of the Cdc48 AAA+ ATPase protein unfolding pathway.
    Cooney I; Schubert HL; Cedeno K; Lin HL; Price JC; Hill CP; Shen PS
    bioRxiv; 2023 May; ():. PubMed ID: 38654823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain Organization of the UBX Domain Containing Protein 9 and Analysis of Its Interactions With the Homohexameric AAA + ATPase p97 (Valosin-Containing Protein).
    Riehl J; Rijal R; Nitz L; Clemen CS; Hofmann A; Eichinger L
    Front Cell Dev Biol; 2021; 9():748860. PubMed ID: 34631722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.