These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35190689)

  • 21. DeepRHD: An efficient hybrid feature extraction technique for protein remote homology detection using deep learning strategies.
    Routray M; Vipsita S; Sundaray A; Kulkarni S
    Comput Biol Chem; 2022 Oct; 100():107749. PubMed ID: 35970053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contrastive learning of protein representations with graph neural networks for structural and functional annotations.
    Luo J; Luo Y
    Pac Symp Biocomput; 2023; 28():109-120. PubMed ID: 36540969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SUS-BAR: a database of pig proteins with statistically validated structural and functional annotation.
    Piovesan D; Profiti G; Martelli PL; Fariselli P; Fontanesi L; Casadio R
    Database (Oxford); 2013; 2013():bat065. PubMed ID: 24065691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D-GENOMICS: a database to compare structural and functional annotations of proteins between sequenced genomes.
    Fleming K; Müller A; MacCallum RM; Sternberg MJ
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D245-50. PubMed ID: 14681404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteome analysis using machine learning approaches and its applications to diseases.
    Sengupta A; Naresh G; Mishra A; Parashar D; Narad P
    Adv Protein Chem Struct Biol; 2021; 127():161-216. PubMed ID: 34340767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of subfamily-specific sites based on active sites modeling and clustering.
    de Melo-Minardi RC; Bastard K; Artiguenave F
    Bioinformatics; 2010 Dec; 26(24):3075-82. PubMed ID: 20980272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Homology-Based Annotation of Large Protein Datasets.
    Punta M; Mistry J
    Methods Mol Biol; 2016; 1415():153-76. PubMed ID: 27115632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decoding the link of microbiome niches with homologous sequences enables accurately targeted protein structure prediction.
    Yang P; Zheng W; Ning K; Zhang Y
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34873061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CIPRO 2.5: Ciona intestinalis protein database, a unique integrated repository of large-scale omics data, bioinformatic analyses and curated annotation, with user rating and reviewing functionality.
    Endo T; Ueno K; Yonezawa K; Mineta K; Hotta K; Satou Y; Yamada L; Ogasawara M; Takahashi H; Nakajima A; Nakachi M; Nomura M; Yaguchi J; Sasakura Y; Yamasaki C; Sera M; Yoshizawa AC; Imanishi T; Taniguchi H; Inaba K
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D807-14. PubMed ID: 21071393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Bologna Annotation Resource (BAR 3.0): improving protein functional annotation.
    Profiti G; Martelli PL; Casadio R
    Nucleic Acids Res; 2017 Jul; 45(W1):W285-W290. PubMed ID: 28453653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FusionGDB 2.0: fusion gene annotation updates aided by deep learning.
    Kim P; Tan H; Liu J; Lee H; Jung H; Kumar H; Zhou X
    Nucleic Acids Res; 2022 Jan; 50(D1):D1221-D1230. PubMed ID: 34755868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics.
    Müller SA; Findeiß S; Pernitzsch SR; Wissenbach DK; Stadler PF; Hofacker IL; von Bergen M; Kalkhof S
    J Proteomics; 2013 Jun; 86():27-42. PubMed ID: 23665149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein family annotation for the Unified Human Gastrointestinal Proteome by DPCfam clustering.
    Barone F; Russo ET; Villegas Garcia EN; Punta M; Cozzini S; Ansuini A; Cazzaniga A
    Sci Data; 2024 Jun; 11(1):568. PubMed ID: 38824125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast.
    Baxter SM; Rosenblum JS; Knutson S; Nelson MR; Montimurro JS; Di Gennaro JA; Speir JA; Burbaum JJ; Fetrow JS
    Mol Cell Proteomics; 2004 Mar; 3(3):209-25. PubMed ID: 14645503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How to inherit statistically validated annotation within BAR+ protein clusters.
    Piovesan D; Martelli PL; Fariselli P; Profiti G; Zauli A; Rossi I; Casadio R
    BMC Bioinformatics; 2013; 14 Suppl 3(Suppl 3):S4. PubMed ID: 23514411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting active site residue annotations in the Pfam database.
    Mistry J; Bateman A; Finn RD
    BMC Bioinformatics; 2007 Aug; 8():298. PubMed ID: 17688688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis.
    Kaundal R; Saini R; Zhao PX
    Plant Physiol; 2010 Sep; 154(1):36-54. PubMed ID: 20647376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The challenge of annotating protein sequences: The tale of eight domains of unknown function in Pfam.
    Goonesekere NC; Shipely K; O'Connor K
    Comput Biol Chem; 2010 Jun; 34(3):210-4. PubMed ID: 20537955
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.