These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35190689)

  • 41. A computational interactome and functional annotation for the human proteome.
    Garzón JI; Deng L; Murray D; Shapira S; Petrey D; Honig B
    Elife; 2016 Oct; 5():. PubMed ID: 27770567
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identifying protein domains with the Pfam database.
    Finn R; Griffiths-Jones S; Bateman A
    Curr Protoc Bioinformatics; 2003 May; Chapter 2():Unit 2.5. PubMed ID: 18428696
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MannDB - a microbial database of automated protein sequence analyses and evidence integration for protein characterization.
    Zhou CL; Lam MW; Smith JR; Zemla AT; Dyer MD; Kuczmarski TA; Vitalis EA; Slezak TR
    BMC Bioinformatics; 2006 Oct; 7():459. PubMed ID: 17044936
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PFresGO: an attention mechanism-based deep-learning approach for protein annotation by integrating gene ontology inter-relationships.
    Pan T; Li C; Bi Y; Wang Z; Gasser RB; Purcell AW; Akutsu T; Webb GI; Imoto S; Song J
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36794913
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Machine learning for discovering missing or wrong protein function annotations : A comparison using updated benchmark datasets.
    Nakano FK; Lietaert M; Vens C
    BMC Bioinformatics; 2019 Sep; 20(1):485. PubMed ID: 31547800
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A proteogenomic survey of the Medicago truncatula genome.
    Volkening JD; Bailey DJ; Rose CM; Grimsrud PA; Howes-Podoll M; Venkateshwaran M; Westphall MS; Ané JM; Coon JJ; Sussman MR
    Mol Cell Proteomics; 2012 Oct; 11(10):933-44. PubMed ID: 22774004
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting functions of maize proteins using graph convolutional network.
    Zhou G; Wang J; Zhang X; Guo M; Yu G
    BMC Bioinformatics; 2020 Dec; 21(Suppl 16):420. PubMed ID: 33323113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GOLabeler: improving sequence-based large-scale protein function prediction by learning to rank.
    You R; Zhang Z; Xiong Y; Sun F; Mamitsuka H; Zhu S
    Bioinformatics; 2018 Jul; 34(14):2465-2473. PubMed ID: 29522145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. EVEREST: automatic identification and classification of protein domains in all protein sequences.
    Portugaly E; Harel A; Linial N; Linial M
    BMC Bioinformatics; 2006 Jun; 7():277. PubMed ID: 16749920
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PFmulDL: a novel strategy enabling multi-class and multi-label protein function annotation by integrating diverse deep learning methods.
    Xia W; Zheng L; Fang J; Li F; Zhou Y; Zeng Z; Zhang B; Li Z; Li H; Zhu F
    Comput Biol Med; 2022 Jun; 145():105465. PubMed ID: 35366467
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of Metabolic Pathway Involvement in Prokaryotic UniProtKB Data by Association Rule Mining.
    Boudellioua I; Saidi R; Hoehndorf R; Martin MJ; Solovyev V
    PLoS One; 2016; 11(7):e0158896. PubMed ID: 27390860
    [TBL] [Abstract][Full Text] [Related]  

  • 52. EyeSite: a semi-automated database of protein families in the eye.
    Lee DA; Fefeu S; Edo-Ukeh AA; Orengo CA; Slingsby C
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D148-52. PubMed ID: 14681381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. De-DUFing the DUFs: Deciphering distant evolutionary relationships of Domains of Unknown Function using sensitive homology detection methods.
    Mudgal R; Sandhya S; Chandra N; Srinivasan N
    Biol Direct; 2015 Jul; 10():38. PubMed ID: 26228684
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PB-Net: Automatic peak integration by sequential deep learning for multiple reaction monitoring.
    Wu Z; Serie D; Xu G; Zou J
    J Proteomics; 2020 Jul; 223():103820. PubMed ID: 32416316
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cross-organism learning method to discover new gene functionalities.
    Domeniconi G; Masseroli M; Moro G; Pinoli P
    Comput Methods Programs Biomed; 2016 Apr; 126():20-34. PubMed ID: 26724853
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids.
    Kristensen DM; Ward RM; Lisewski AM; Erdin S; Chen BY; Fofanov VY; Kimmel M; Kavraki LE; Lichtarge O
    BMC Bioinformatics; 2008 Jan; 9():17. PubMed ID: 18190718
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Pfam protein families database.
    Punta M; Coggill PC; Eberhardt RY; Mistry J; Tate J; Boursnell C; Pang N; Forslund K; Ceric G; Clements J; Heger A; Holm L; Sonnhammer EL; Eddy SR; Bateman A; Finn RD
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D290-301. PubMed ID: 22127870
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pfam 10 years on: 10,000 families and still growing.
    Sammut SJ; Finn RD; Bateman A
    Brief Bioinform; 2008 May; 9(3):210-9. PubMed ID: 18344544
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unified rational protein engineering with sequence-based deep representation learning.
    Alley EC; Khimulya G; Biswas S; AlQuraishi M; Church GM
    Nat Methods; 2019 Dec; 16(12):1315-1322. PubMed ID: 31636460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.