These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
426 related articles for article (PubMed ID: 35190763)
1. Analysis of Sepsis Markers and Pathogenesis Based on Gene Differential Expression and Protein Interaction Network. Liang J; Wu W; Wang X; Wu W; Chen S; Jiang M J Healthc Eng; 2022; 2022():6878495. PubMed ID: 35190763 [TBL] [Abstract][Full Text] [Related]
2. Identification of Key Inflammation-related Genes as Potential Diagnostic Biomarkers of Sepsis. Guo P; Wang R; Shen J; Zhang L; Mo W Altern Ther Health Med; 2023 Jul; 29(5):24-31. PubMed ID: 37235492 [TBL] [Abstract][Full Text] [Related]
3. CD3D and CD247 are the molecular targets of septic shock. Yang Q; Feng Z; Ding D; Kang C Medicine (Baltimore); 2023 Jul; 102(29):e34295. PubMed ID: 37478215 [TBL] [Abstract][Full Text] [Related]
4. Six potential biomarkers in septic shock: a deep bioinformatics and prospective observational study. Kong C; Zhu Y; Xie X; Wu J; Qian M Front Immunol; 2023; 14():1184700. PubMed ID: 37359526 [TBL] [Abstract][Full Text] [Related]
5. Jiang Y; Miao Q; Hu L; Zhou T; Hu Y; Tian Y Comb Chem High Throughput Screen; 2022; 25(10):1722-1730. PubMed ID: 34397323 [TBL] [Abstract][Full Text] [Related]
6. Bioinformatics analyses of gene expression profile identify key genes and functional pathways involved in cutaneous lupus erythematosus. Gao ZY; Su LC; Wu QC; Sheng JE; Wang YL; Dai YF; Chen AP; He SS; Huang X; Yan GQ Clin Rheumatol; 2022 Feb; 41(2):437-452. PubMed ID: 34553293 [TBL] [Abstract][Full Text] [Related]
7. Identification of key pathogenic genes of sepsis based on the Gene Expression Omnibus database. Lu X; Xue L; Sun W; Ye J; Zhu Z; Mei H Mol Med Rep; 2018 Feb; 17(2):3042-3054. PubMed ID: 29257295 [TBL] [Abstract][Full Text] [Related]
8. Identification of Potential Genetic Biomarkers and Target Genes of Peri-Implantitis Using Bioinformatics Tools. Zhang X; Wang Z; Hu L; Shen X; Liu C Biomed Res Int; 2021; 2021():1759214. PubMed ID: 34931168 [TBL] [Abstract][Full Text] [Related]
9. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250 [TBL] [Abstract][Full Text] [Related]
10. Bioinformatics-Based Study to Investigate Potential Differentially Expressed Genes and miRNAs in Pediatric Sepsis. Xie K; Kong S; Li F; Zhang Y; Wang J; Zhao W Med Sci Monit; 2020 Jun; 26():e923881. PubMed ID: 32575108 [TBL] [Abstract][Full Text] [Related]
11. Screening of Sepsis Biomarkers Based on Bioinformatics Data Analysis. Liang G; Li J; Pu S; He Z J Healthc Eng; 2022; 2022():6788569. PubMed ID: 36199375 [TBL] [Abstract][Full Text] [Related]
12. Immune gene expression networks in sepsis: A network biology approach. Kim KS; Jekarl DW; Yoo J; Lee S; Kim M; Kim Y PLoS One; 2021; 16(3):e0247669. PubMed ID: 33667236 [TBL] [Abstract][Full Text] [Related]
13. Bioinformatics Analysis of Gene Expression Profiles for Risk Prediction in Patients with Septic Shock. Hu Y; Cheng L; Zhong W; Chen M; Zhang Q Med Sci Monit; 2019 Dec; 25():9563-9571. PubMed ID: 31838482 [TBL] [Abstract][Full Text] [Related]
14. Identification and validation of oxidative stress-related genes in sepsis-induced myopathy. Zhang N; Huang D; Li X; Yan J; Yan Q; Ge W; Zhou J Medicine (Baltimore); 2024 May; 103(18):e37933. PubMed ID: 38701300 [TBL] [Abstract][Full Text] [Related]
15. [Bioinformatics analysis and key gene verification of sepsis myocardial macrophage microarray data based on GEO database]. Hu DX; Chen SS; Yu Y; Hu LL; Liu L; Yu LL Zhonghua Xin Xue Guan Bing Za Zhi; 2023 Jul; 51(7):759-768. PubMed ID: 37460430 [No Abstract] [Full Text] [Related]
16. Identification of differentially expressed genes, transcription factors, microRNAs and pathways in neutrophils of sepsis patients through bioinformatics analysis. Zheng Y; Peng L; He Z; Zou Z; Li F; Huang C; Li W Cell Mol Biol (Noisy-le-grand); 2022 Feb; 67(5):405-420. PubMed ID: 35818227 [TBL] [Abstract][Full Text] [Related]
17. Identification of Key Biomarkers and Potential Molecular Mechanisms in Renal Cell Carcinoma by Bioinformatics Analysis. Li F; Guo P; Dong K; Guo P; Wang H; Lv X J Comput Biol; 2019 Nov; 26(11):1278-1295. PubMed ID: 31233342 [No Abstract] [Full Text] [Related]
18. Identification of the Diagnostic Signature of Sepsis Based on Bioinformatic Analysis of Gene Expression and Machine Learning. Zhao Q; Xu N; Guo H; Li J Comb Chem High Throughput Screen; 2022; 25(1):21-28. PubMed ID: 33280594 [TBL] [Abstract][Full Text] [Related]
19. Gene network in pulmonary tuberculosis based on bioinformatic analysis. Li L; Lv J; He Y; Wang Z BMC Infect Dis; 2020 Aug; 20(1):612. PubMed ID: 32811479 [TBL] [Abstract][Full Text] [Related]
20. Bioinformatics Analysis Identifies Hub Genes and Molecular Pathways Involved in Sepsis-Induced Myopathy. Ning YL; Yang ZQ; Xian SX; Lin JZ; Lin XF; Chen WT Med Sci Monit; 2020 Feb; 26():e919665. PubMed ID: 32008037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]