These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 35190878)

  • 1. The anti-Leishmania potential of bioactive compounds derived from naphthoquinones and their possible applications. A systematic review of animal studies.
    Ramos-Milaré ÁCFH; Oyama J; Murase LS; Souza JVP; Guedes BS; Lera-Nonose DSSL; Monich MT; Brustolin AÁ; Demarchi IG; Teixeira JJV; Lonardoni MVC
    Parasitol Res; 2022 May; 121(5):1247-1280. PubMed ID: 35190878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of lapachol on treatment of cutaneous and visceral leishmaniasis.
    Araújo IAC; de Paula RC; Alves CL; Faria KF; Oliveira MM; Mendes GG; Dias EMFA; Ribeiro RR; Oliveira AB; Silva SMD
    Exp Parasitol; 2019 Apr; 199():67-73. PubMed ID: 30797783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro effects of lapachol and β-lapachone against Leishmania amazonensis.
    Ramos-Milaré ÁCFH; Sydor BG; Brustolin AÁ; Lera-Nonose DSSL; Oyama J; Silva EL; Caetano W; Campanholi KSS; Demarchi IG; Silveira TGV; Lonardoni MVC
    Braz J Med Biol Res; 2023; 56():e12693. PubMed ID: 37255095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Systematic Review of Curcumin and its Derivatives as Valuable Sources of Antileishmanial Agents.
    Albalawi AE; Alanazi AD; Sharifi I; Ezzatkhah F
    Acta Parasitol; 2021 Sep; 66(3):797-811. PubMed ID: 33770343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo antileishmanial efficacy of a naphthoquinone derivate incorporated into a Pluronic
    Mendonça DVC; Tavares GSV; Lage DP; Soyer TG; Carvalho LM; Dias DS; Ribeiro PAF; Ottoni FM; Antinarelli LMR; Vale DL; Ludolf F; Duarte MC; Coimbra ES; Chávez-Fumagalli MA; Roatt BM; Menezes-Souza D; Barichello JM; Alves RJ; Coelho EAF
    Biomed Pharmacother; 2019 Jan; 109():779-787. PubMed ID: 30551531
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Pereira MB; Sydor BG; Memare KG; Verzignassi Silveira TG; Alessi Aristides SM; Dalmarco EM; Vieira Teixeira JJ; Campana Lonardoni MV; Demarchi IG
    Nanomedicine (Lond); 2021 Jul; 16(17):1505-1518. PubMed ID: 34189952
    [No Abstract]   [Full Text] [Related]  

  • 7. Potential of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones against Leishmania (L.) infantum: biological activity and structure-activity relationships.
    Pinto EG; Santos IO; Schmidt TJ; Borborema SE; Ferreira VF; Rocha DR; Tempone AG
    PLoS One; 2014; 9(8):e105127. PubMed ID: 25171058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interventions for Old World cutaneous leishmaniasis.
    Heras-Mosteiro J; Monge-Maillo B; Pinart M; Lopez Pereira P; Reveiz L; Garcia-Carrasco E; Campuzano Cuadrado P; Royuela A; Mendez Roman I; López-Vélez R
    Cochrane Database Syst Rev; 2017 Nov; 11(11):CD005067. PubMed ID: 29149474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antileishmanial activity of terpenylquinones on Leishmania infantum and their effects on Leishmania topoisomerase IB.
    Pérez-Pertejo Y; Escudero-Martínez JM; Reguera RM; Balaña-Fouce R; García PA; Jambrina PG; San Feliciano A; Castro MÁ
    Int J Parasitol Drugs Drug Resist; 2019 Dec; 11():70-79. PubMed ID: 31678841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the in vitro and in vivo antileishmanial activity of a chloroquinolin derivative against Leishmania species capable of causing tegumentary and visceral leishmaniasis.
    Soyer TG; Mendonça DVC; Tavares GSV; Lage DP; Dias DS; Ribeiro PAF; Perin L; Ludolf F; Coelho VTS; Ferreira ACG; Neves PHAS; Matos GF; Chávez-Fumagalli MA; Coimbra ES; Pereira GR; Coelho EAF; Antinarelli LMR
    Exp Parasitol; 2019 Apr; 199():30-37. PubMed ID: 30817917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural and Synthetic Naphthoquinones as Potential Anti-Infective Agents.
    Ortiz-Pérez E; Rivera G; Salas CO; Zarate-Ramos JJ; Trofymchuk OS; Hernandez-Soberanis L; Perales-Flores JD; Vázquez K
    Curr Top Med Chem; 2021; 21(22):2046-2069. PubMed ID: 34525920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epoxy-α-lapachone has in vitro and in vivo anti-leishmania (Leishmania) amazonensis effects and inhibits serine proteinase activity in this parasite.
    Souza-Silva F; Bourguignon SC; Pereira BA; Côrtes LM; de Oliveira LF; Henriques-Pons A; Finkelstein LC; Ferreira VF; Carneiro PF; de Pinho RT; Caffarena ER; Alves CR
    Antimicrob Agents Chemother; 2015 Apr; 59(4):1910-8. PubMed ID: 25583728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colombian Contributions Fighting Leishmaniasis: A Systematic Review on Antileishmanials Combined with Chemoinformatics Analysis.
    Sánchez-Suárez J; Bernal FA; Coy-Barrera E
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33287235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potent naphthoquinones against antimony-sensitive and -resistant Leishmania parasites: synthesis of novel α- and nor-α-lapachone-based 1,2,3-triazoles by copper-catalyzed azide-alkyne cycloaddition.
    Guimarães TT; Pinto Mdo C; Lanza JS; Melo MN; do Monte-Neto RL; de Melo IM; Diogo EB; Ferreira VF; Camara CA; Valença WO; de Oliveira RN; Frézard F; da Silva EN
    Eur J Med Chem; 2013 May; 63():523-30. PubMed ID: 23535320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of natural naphthoquinones in BALB/c mice infected with Leishmania amazonensis and L. venezuelensis.
    Fournet A; Barrios AA; Muñoz V; Hocquemiller R; Cavé A
    Trop Med Parasitol; 1992 Dec; 43(4):219-22. PubMed ID: 1293723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promising natural products for the treatment of cutaneous leishmaniasis: A review of in vitro and in vivo studies.
    Afonso RC; Yien RMK; de Siqueira LBO; Simas NK; Dos Santos Matos AP; Ricci-Júnior E
    Exp Parasitol; 2023 Aug; 251():108554. PubMed ID: 37268108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis.
    Costa Duarte M; dos Reis Lage LM; Lage DP; Mesquita JT; Salles BC; Lavorato SN; Menezes-Souza D; Roatt BM; Alves RJ; Tavares CA; Tempone AG; Coelho EA
    Vet Parasitol; 2016 Feb; 217():81-8. PubMed ID: 26827866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flau-A, a naphthoquinone derivative, is a promising therapeutic candidate against visceral leishmaniasis: A preliminary study.
    Mendonça DVC; Tavares GSV; Pereira IAG; Oliveira-da-Silva JA; Ramos FF; Lage DP; Machado AS; Carvalho LM; Reis TAR; Carvalho AMRS; Ottoni FM; Ludolf F; Freitas CS; Martins VT; Chávez-Fumagalli MA; Duarte MC; Humbert MV; Roatt BM; Menezes-Souza D; Alves RJ; Coelho EAF
    Exp Parasitol; 2022 Feb; 233():108205. PubMed ID: 34968460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex-Related Differences in Immune Response and Symptomatic Manifestations to Infection with
    Lockard RD; Wilson ME; Rodríguez NE
    J Immunol Res; 2019; 2019():4103819. PubMed ID: 30756088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antileishmanial activity of lapachol analogues.
    Lima NM; Correia CS; Leon LL; Machado GM; Madeira Mde F; Santana AE; Goulart MO
    Mem Inst Oswaldo Cruz; 2004 Nov; 99(7):757-61. PubMed ID: 15654435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.