These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 35191200)
21. High-Performance Aqueous Zinc-Ion Battery Based on Layered H He P; Quan Y; Xu X; Yan M; Yang W; An Q; He L; Mai L Small; 2017 Dec; 13(47):. PubMed ID: 29152849 [TBL] [Abstract][Full Text] [Related]
22. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Luo JY; Cui WJ; He P; Xia YY Nat Chem; 2010 Sep; 2(9):760-5. PubMed ID: 20729897 [TBL] [Abstract][Full Text] [Related]
23. Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions. Dai C; Hu L; Chen H; Jin X; Han Y; Wang Y; Li X; Zhang X; Song L; Xu M; Cheng H; Zhao Y; Zhang Z; Liu F; Qu L Nat Commun; 2022 Apr; 13(1):1863. PubMed ID: 35387998 [TBL] [Abstract][Full Text] [Related]
24. Aqueous Rechargeable Zn-ion Batteries: Strategies for Improving the Energy Storage Performance. Mallick S; Raj CR ChemSusChem; 2021 May; 14(9):1987-2022. PubMed ID: 33725419 [TBL] [Abstract][Full Text] [Related]
25. Ultralong-Life Cathode for Aqueous Zinc-Organic Batteries via Pouring 9,10-Phenanthraquinone into Active Carbon. Yang B; Ma Y; Bin D; Lu H; Xia Y ACS Appl Mater Interfaces; 2021 Dec; 13(49):58818-58826. PubMed ID: 34846135 [TBL] [Abstract][Full Text] [Related]
26. Novel 3D Nanoporous Zn-Cu Alloy as Long-Life Anode toward High-Voltage Double Electrolyte Aqueous Zinc-Ion Batteries. Liu B; Wang S; Wang Z; Lei H; Chen Z; Mai W Small; 2020 Jun; 16(22):e2001323. PubMed ID: 32378354 [TBL] [Abstract][Full Text] [Related]
27. Unveiling Phenoxazine's Unique Reversible Two-Electron Transfer Process and Stable Redox Intermediates for High-Performance Aqueous Zinc-ion Batteries. Ning J; Zhang X; Xie D; He Q; Hu J; Tang J; Li R; Meng H; Yao KX Angew Chem Int Ed Engl; 2024 May; 63(19):e202319796. PubMed ID: 38451050 [TBL] [Abstract][Full Text] [Related]
28. A High-Rate and Long-Life Aqueous Rechargeable Mg-Ion Battery Based on an Organic Anode Integrating Diimide and Triazine. Cang R; Zhang M; Zhou X; Zhu K; Zhang X; Cao D ChemSusChem; 2023 May; 16(10):e202202347. PubMed ID: 36648289 [TBL] [Abstract][Full Text] [Related]
29. Novel Alkaline Zn/Na Yuan T; Zhang J; Pu X; Chen Z; Tang C; Zhang X; Ai X; Huang Y; Yang H; Cao Y ACS Appl Mater Interfaces; 2018 Oct; 10(40):34108-34115. PubMed ID: 30216037 [TBL] [Abstract][Full Text] [Related]
30. Aqueous Multivalent Charge Storage Mechanism in Aromatic Diamine-Based Organic Electrodes. Sariyer S; Ghosh A; Dambasan SN; Halim EM; El Rhazi M; Perrot H; Sel O; Demir-Cakan R ACS Appl Mater Interfaces; 2022 Feb; 14(6):8508-8520. PubMed ID: 35119810 [TBL] [Abstract][Full Text] [Related]
31. An Anti-Aromatic Covalent Organic Framework Cathode with Dual-Redox Centers for Rechargeable Aqueous Zinc Batteries. Lin Z; Lin L; Zhu J; Wu W; Yang X; Sun X ACS Appl Mater Interfaces; 2022 Aug; 14(34):38689-38695. PubMed ID: 35975747 [TBL] [Abstract][Full Text] [Related]
32. All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte. Dong X; Yu H; Ma Y; Bao JL; Truhlar DG; Wang Y; Xia Y Chemistry; 2017 Feb; 23(11):2560-2565. PubMed ID: 28075043 [TBL] [Abstract][Full Text] [Related]
33. Oxygen Defect Hydrated Vanadium Dioxide/Graphene as a Superior Cathode for Aqueous Zn Batteries. Huang S; He S; Qin H; Hou X ACS Appl Mater Interfaces; 2021 Sep; 13(37):44379-44388. PubMed ID: 34495640 [TBL] [Abstract][Full Text] [Related]
34. Conducting Redox Polymer as a Robust Organic Electrode-Active Material in Acidic Aqueous Electrolyte towards Polymer-Air Secondary Batteries. Oka K; Strietzel C; Emanuelsson R; Nishide H; Oyaizu K; Strømme M; Sjödin M ChemSusChem; 2020 May; 13(9):2280-2285. PubMed ID: 32267605 [TBL] [Abstract][Full Text] [Related]
35. Electrical Conductivity-Relay between Organic Charge-Transfer and Radical Salts toward Conductive Additive-Free Rechargeable Battery. Fujihara Y; Kobayashi H; Takaishi S; Tomai T; Yamashita M; Honma I ACS Appl Mater Interfaces; 2020 Jun; 12(23):25748-25755. PubMed ID: 32412238 [TBL] [Abstract][Full Text] [Related]
36. Zn/V Hu P; Yan M; Zhu T; Wang X; Wei X; Li J; Zhou L; Li Z; Chen L; Mai L ACS Appl Mater Interfaces; 2017 Dec; 9(49):42717-42722. PubMed ID: 29155554 [TBL] [Abstract][Full Text] [Related]
37. Establishing High-Performance Quasi-Solid Zn/I Shang W; Zhu J; Liu Y; Kang L; Liu S; Huang B; Song J; Li X; Jiang F; Du W; Gao Y; Luo H ACS Appl Mater Interfaces; 2021 Jun; 13(21):24756-24764. PubMed ID: 34004110 [TBL] [Abstract][Full Text] [Related]
38. Fused Functional Organic Material with the Alternating Conjugation of Quinone-Pyrazine as Cathode for Aqueous Zinc Ion Batteries. Wang Y; Niu S; Gong S; Ju N; Jiang T; Wang Y; Zhang X; Sun Q; Sun HB Small Methods; 2024 Jul; 8(7):e2301301. PubMed ID: 38185796 [TBL] [Abstract][Full Text] [Related]
39. Reversible Electrochemical Energy Storage Based on Zinc-Halide Chemistry. Ejigu A; Le Fevre LW; Dryfe RAW ACS Appl Mater Interfaces; 2021 Mar; 13(12):14112-14121. PubMed ID: 33724772 [TBL] [Abstract][Full Text] [Related]
40. Low-Concentration Redox-Electrolytes for High-Rate and Long-Life Zinc Metal Batteries. Wang S; Zhao Y; Lv H; Hu X; He J; Zhi C; Li H Small; 2024 Dec; 20(50):e2207664. PubMed ID: 37026660 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]