These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 35191559)

  • 1. A High-Fidelity Skin-Attachable Acoustic Sensor for Realizing Auditory Electronic Skin.
    Lee S; Kim J; Roh H; Kim W; Chung S; Moon W; Cho K
    Adv Mater; 2022 May; 34(21):e2109545. PubMed ID: 35191559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Electret-Powered Skin-Attachable Auditory Sensor that Functions in Harsh Acoustic Environments.
    Lee S; Roh H; Kim J; Chung S; Seo D; Moon W; Cho K
    Adv Mater; 2022 Oct; 34(40):e2205537. PubMed ID: 35973438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive Anti-Interference Voice Recognition by Bio-Inspired Skin-Attachable Self-Cleaning Acoustic Sensors.
    Dinh Le TS; An J; Huang Y; Vo Q; Boonruangkan J; Tran T; Kim SW; Sun G; Kim YJ
    ACS Nano; 2019 Nov; 13(11):13293-13303. PubMed ID: 31687810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic Acoustic Sensor with an Impedance-Matched Diaphragm Characterized for Body Sound Monitoring.
    Rennoll V; McLane I; Eisape A; Grant D; Hahn H; Elhilali M; West JE
    ACS Appl Bio Mater; 2023 Aug; 6(8):3241-3256. PubMed ID: 37470762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent and Flexible Vibration Sensor Based on a Wheel-Shaped Hybrid Thin Membrane.
    Lee S; Lee EK; Lee E; Bae GY
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin Eardrum-Inspired Self-Powered Acoustic Sensor for Vocal Synchronization Recognition with the Assistance of Machine Learning.
    Jiang Y; Zhang Y; Ning C; Ji Q; Peng X; Dong K; Wang ZL
    Small; 2022 Apr; 18(13):e2106960. PubMed ID: 35122473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Machine Learning-Combined Flexible Sensor for Tactile Detection and Voice Recognition.
    Xie J; Zhao Y; Zhu D; Yan J; Li J; Qiao M; He G; Deng S
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12551-12559. PubMed ID: 36808950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition.
    Lee S; Kim J; Yun I; Bae GY; Kim D; Park S; Yi IM; Moon W; Chung Y; Cho K
    Nat Commun; 2019 Jun; 10(1):2468. PubMed ID: 31213598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence.
    Yang Z; Zhu Z; Chen Z; Liu M; Zhao B; Liu Y; Cheng Z; Wang S; Yang W; Yu T
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural Network-Enabled Flexible Pressure and Temperature Sensor with Honeycomb-like Architecture for Voice Recognition.
    Su Y; Ma K; Zhang X; Liu M
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive low-frequency-detectable acoustic sensor using a piezoresistive cantilever for health monitoring applications.
    Okamoto Y; Nguyen TV; Takahashi H; Takei Y; Okada H; Ichiki M
    Sci Rep; 2023 Apr; 13(1):6503. PubMed ID: 37081122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AI-Assisted Disease Monitoring Using Stretchable Polymer-Based Sensors.
    Li T; Wang Q; Su Y; Qiao F; Pei Q; Li X; Tan Y; Zhou Z
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30924-30934. PubMed ID: 37319270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Flexible, Acoustic Localized Sensor with Mass Block-Beam Structure Based on Polydimethylsiloxane-Silver Nanowires.
    Zhang Q; Ji C; Lv L; Zhao D; Ji J; Zhuo K; Yuan Z; Zhang W; Sang S
    Soft Robot; 2021 Jun; 8(3):352-363. PubMed ID: 32668191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring.
    Jeong YR; Lee G; Park H; Ha JS
    Acc Chem Res; 2019 Jan; 52(1):91-99. PubMed ID: 30586283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of Vital Signs with Flexible and Wearable Medical Devices.
    Khan Y; Ostfeld AE; Lochner CM; Pierre A; Arias AC
    Adv Mater; 2016 Jun; 28(22):4373-95. PubMed ID: 26867696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration.
    Shin J; Jeong B; Kim J; Nam VB; Yoon Y; Jung J; Hong S; Lee H; Eom H; Yeo J; Choi J; Lee D; Ko SH
    Adv Mater; 2020 Jan; 32(2):e1905527. PubMed ID: 31696977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones.
    Kang S; Cho S; Shanker R; Lee H; Park J; Um DS; Lee Y; Ko H
    Sci Adv; 2018 Aug; 4(8):eaas8772. PubMed ID: 30083604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.
    Lou Z; Li L; Wang L; Shen G
    Small; 2017 Dec; 13(45):. PubMed ID: 29076297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible integrated sensor with asymmetric structure for simultaneously 3D tactile and thermal sensing.
    Wang Y; Sun K; Zhang Q; Yu SS; Han BS; Wang J; Zhao M; Meng X; Chen S; Zheng Y
    Biosens Bioelectron; 2023 Mar; 224():115054. PubMed ID: 36603284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.