These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 35191602)

  • 1. Electrolyte Engineering Enables High Performance Zinc-Ion Batteries.
    Wang Y; Wang Z; Yang F; Liu S; Zhang S; Mao J; Guo Z
    Small; 2022 Oct; 18(43):e2107033. PubMed ID: 35191602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review.
    Du Y; Li Y; Xu BB; Liu TX; Liu X; Ma F; Gu X; Lai C
    Small; 2022 Oct; 18(43):e2104640. PubMed ID: 34882951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the Performance of Aqueous Zinc-ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress.
    Ho VC; Lim H; Kim MJ; Mun J
    Chem Asian J; 2022 Jul; 17(14):e202200289. PubMed ID: 35546083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Graphene-Based Materials for Zinc-Ion Batteries.
    Li L; Yue S; Jia S; Wang C; Zhang D
    Chem Rec; 2024 Apr; 24(4):e202300341. PubMed ID: 38180284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries.
    Huang S; Zhu J; Tian J; Niu Z
    Chemistry; 2019 Nov; 25(64):14480-14494. PubMed ID: 31407398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress on Zinc-Ion Rechargeable Batteries.
    Xu W; Wang Y
    Nanomicro Lett; 2019 Oct; 11(1):90. PubMed ID: 34138036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous Rechargeable Zn-ion Batteries: Strategies for Improving the Energy Storage Performance.
    Mallick S; Raj CR
    ChemSusChem; 2021 May; 14(9):1987-2022. PubMed ID: 33725419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanadium-Based Cathodes for Aqueous Zinc-Ion Batteries: Mechanisms, Challenges, and Strategies.
    Zhu K; Yang W
    Acc Chem Res; 2024 Oct; 57(19):2887-2900. PubMed ID: 39279672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulating Interfacial Ion Migration via Wool Keratin Mediated Biogel Electrolyte toward Robust Flexible Zn-Ion Batteries.
    Shao Y; Zhao J; Hu W; Xia Z; Luo J; Zhou Y; Zhang L; Yang X; Ma N; Yang D; Shi Q; Sun J; Zhang L; Hui J; Shao Y
    Small; 2022 Mar; 18(10):e2107163. PubMed ID: 35112793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives.
    Wang T; Li C; Xie X; Lu B; He Z; Liang S; Zhou J
    ACS Nano; 2020 Dec; 14(12):16321-16347. PubMed ID: 33314908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrolyte Dynamics Engineering for Flexible Fiber-Shaped Aqueous Zinc-Ion Battery with Ultralong Stability.
    Lu Y; Zhang H; Liu H; Nie Z; Xu F; Zhao Y; Zhu J; Huang W
    Nano Lett; 2021 Nov; 21(22):9651-9660. PubMed ID: 34767374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes.
    Fan X; Zhong C; Liu J; Ding J; Deng Y; Han X; Zhang L; Hu W; Wilkinson DP; Zhang J
    Chem Rev; 2022 Dec; 122(23):17155-17239. PubMed ID: 36239919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials chemistry for rechargeable zinc-ion batteries.
    Zhang N; Chen X; Yu M; Niu Z; Cheng F; Chen J
    Chem Soc Rev; 2020 Jul; 49(13):4203-4219. PubMed ID: 32478772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separator Design Strategies to Advance Rechargeable Aqueous Zinc Ion Batteries.
    Du H; Yi Z; Li H; Lv W; Hu N; Zhang X; Chen W; Wei Z; Shen F; He H
    Chemistry; 2024 Feb; 30(10):e202303461. PubMed ID: 38050714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights on Flexible Zinc-Ion Batteries from Lab Research to Commercialization.
    Dong H; Li J; Guo J; Lai F; Zhao F; Jiao Y; Brett DJL; Liu T; He G; Parkin IP
    Adv Mater; 2021 May; 33(20):e2007548. PubMed ID: 33797810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural Engineering of Cathode Materials for Advanced Zinc-Ion Aqueous Batteries.
    Pam ME; Yan D; Yu J; Fang D; Guo L; Li XL; Li TC; Lu X; Ang LK; Amal R; Han Z; Yang HY
    Adv Sci (Weinh); 2020 Jan; 8(1):2002722. PubMed ID: 33437582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additives for Aqueous Zinc-Ion Batteries: Recent Progress, Mechanism Analysis, and Future Perspectives.
    Cao J; Zhao F; Guan W; Yang X; Zhao Q; Gao L; Ren X; Wu G; Liu A
    Small; 2024 Aug; 20(33):e2400221. PubMed ID: 38586921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Minireview of the Solid-State Electrolytes for Zinc Batteries.
    Yao W; Zheng Z; Zhou J; Liu D; Song J; Zhu Y
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent Organic Frameworks in Aqueous Zinc-Ion Batteries.
    Li L; Yang H; Peng H; Lei Z; Xu Y
    Chemistry; 2023 Nov; 29(64):e202302502. PubMed ID: 37621027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrolyte Solvation Chemistry for Stabilizing the Zn Anode via Functionalized Organic Agents.
    Zhang Y; Fu X; Ding Y; Liu Y; Zhao Y; Jiao S
    Small; 2024 Jul; 20(28):e2311407. PubMed ID: 38351471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.