These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35191663)

  • 21. Enhanced Sonodynamic Cancer Therapy through Iron-Doping and Oxygen-Vacancy Engineering of Piezoelectric Bismuth Tungstate Nanosheets.
    Ding Y; Zhao Y; Yao S; Wang S; Wan X; Hu Q; Li L
    Small; 2023 Jun; 19(24):e2300327. PubMed ID: 36919311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct Z-Scheme 0D/2D Heterojunction of CsPbBr
    Wang J; Wang J; Li N; Du X; Ma J; He C; Li Z
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31477-31485. PubMed ID: 32568504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced photocatalytic activity of Bi2WO6 with oxygen vacancies by zirconium doping.
    Zhang Z; Wang W; Gao E; Shang M; Xu J
    J Hazard Mater; 2011 Nov; 196():255-62. PubMed ID: 21944838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High piezocatalytic capability in CuS/MoS
    Li H; Xiong Y; Wang Y; Ma W; Fang J; Li X; Han Q; Liu Y; He C; Fang P
    J Colloid Interface Sci; 2022 Mar; 609():657-666. PubMed ID: 34838313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A π-π stacking perylene imide/Bi
    Han J; Deng Y; Li N; Chen D; Xu Q; Li H; He J; Lu J
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):1021-1032. PubMed ID: 32927169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct observation of oxygen-vacancy formation and structural changes in Bi
    Shi HL; Zou B; Li ZA; Luo MT; Wang WZ
    Beilstein J Nanotechnol; 2019; 10():1434-1442. PubMed ID: 31431855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A high-performance Bi2WO6-graphene photocatalyst for visible light-induced H2 and O2 generation.
    Sun Z; Guo J; Zhu S; Mao L; Ma J; Zhang D
    Nanoscale; 2014 Feb; 6(4):2186-93. PubMed ID: 24366447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-efficient synergy of piezocatalysis and photocatalysis in bismuth oxychloride nanomaterial for dye decomposition.
    Ismail M; Wu Z; Zhang L; Ma J; Jia Y; Hu Y; Wang Y
    Chemosphere; 2019 Aug; 228():212-218. PubMed ID: 31029967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Novel Strategy for Excellent Piezocatalytic Activity in Lead-Free BaTiO
    Li J; Wei X; Sun XX; Li R; Wu C; Liao J; Zheng T; Wu J
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46765-46774. PubMed ID: 36198138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygen vacancy mediated single unit cell Bi
    Arif M; Zhang M; Mao Y; Bu Q; Ali A; Qin Z; Muhmood T; Shahnoor ; Liu X; Zhou B; Chen SM
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):276-291. PubMed ID: 32771738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition metal dichalcogenides nanomaterials based piezocatalytic activity: recent progresses and outlook.
    Kole AK; Karmakar S; Pramanik A; Kumbhakar P
    Nanotechnology; 2023 Apr; 34(28):. PubMed ID: 37028416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of oxygen vacancy defects on Aurivillius phase layered perovskite oxides of bismuth towards photocatalytic environmental remediation.
    Sharma M; Kumar A; Krishnan V
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35412470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bismuth nanoparticles and oxygen vacancies synergistically modified HNb
    Zhang Q; Zhou C; Shi X; Zhou Y; Ye Q; Li D; Tian D; Jiang D
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):721-730. PubMed ID: 36274407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen-Vacancy-Rich Piezoelectric BiO
    Yang L; Tian B; Xie Y; Dong S; Yang M; Gai S; Lin J
    Adv Mater; 2023 Jul; 35(29):e2300648. PubMed ID: 37058740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bismuth Vacancy-Tuned Bismuth Oxybromide Ultrathin Nanosheets toward Photocatalytic CO
    Di J; Chen C; Zhu C; Song P; Xiong J; Ji M; Zhou J; Fu Q; Xu M; Hao W; Xia J; Li S; Li H; Liu Z
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30786-30792. PubMed ID: 31362488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BaTiO
    Lin E; Qin N; Wu J; Yuan B; Kang Z; Bao D
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14005-14015. PubMed ID: 32142247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cadmium sulfide modified zinc oxide heterojunction harvesting ultrasonic mechanical energy for efficient decomposition of dye wastewater.
    Li X; Wang J; Zhang J; Zhao C; Wu Y; He Y
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):412-422. PubMed ID: 34509115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effective charge kinetics steering in surface plasmons coupled two-dimensional chemical Au/Bi
    Wan J; Zhang Y; Wang R; Liu L; Liu E; Fan J; Fu F
    J Hazard Mater; 2020 Feb; 384():121484. PubMed ID: 31653409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interface engineering of CeO
    Nam D; Lee G; Kim J
    RSC Adv; 2023 Mar; 13(13):8873-8881. PubMed ID: 36936830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic mediation of metallic bismuth and oxygen vacancy in Bi/Bi
    Huang T; Tian F; Wen Z; Li G; Liang Y; Chen R
    J Hazard Mater; 2021 Feb; 403():123661. PubMed ID: 33264869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.