BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35191668)

  • 1. Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures.
    Wang YF; Zhang Q; Tian F; Wang H; Wang Y; Ma X; Huang Q; Cai M; Ji Y; Wu X; Gan Y; Yan Y; Dawson KA; Guo S; Zhang J; Shi X; Shan Y; Liang XJ
    ACS Nano; 2022 Mar; 16(3):4059-4071. PubMed ID: 35191668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic and microscopic analyses of rod-shaped gold nanoparticles interacting with single-stranded DNA oligonucleotides.
    Saber R; Shakoori Z; Sarkar S; Tavoosidana G; Kharrazi S; Gill P
    IET Nanobiotechnol; 2013 Jun; 7(2):42-9. PubMed ID: 24046904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the Dynamic Mechanism by Which Transferrin Promotes the Cellular Uptake of HAIYPRH Peptide-Conjugated Nanostructures by Force Tracing.
    Li S; Wang R; Li J; Liu Y; Fu Y; Zhou J; Yang G; Shan Y
    Mol Pharm; 2021 Mar; 18(3):1480-1485. PubMed ID: 33517655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc oxide nanorod growth on gold islands prepared by microsphere lithography on silicon and quartz.
    Blackledge CW; Szarko JM; Dupont A; Chan GH; Read EL; Leone SR
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3336-9. PubMed ID: 18019171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoupling the shape parameter to assess gold nanorod uptake by mammalian cells.
    Kinnear C; Rodriguez-Lorenzo L; Clift MJ; Goris B; Bals S; Rothen-Rutishauser B; Petri-Fink A
    Nanoscale; 2016 Sep; 8(36):16416-16426. PubMed ID: 27714053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape and surface chemistry effects on the cytotoxicity and cellular uptake of metallic nanorods and nanospheres.
    Favi PM; Valencia MM; Elliott PR; Restrepo A; Gao M; Huang H; Pavon JJ; Webster TJ
    J Biomed Mater Res A; 2015 Dec; 103(12):3940-55. PubMed ID: 26053238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-Independent Transmembrane Transporting of Single Tetrahedral DNA Nanostructures.
    Chen X; Tian F; Li M; Xu H; Cai M; Li Q; Zuo X; Wang H; Shi X; Fan C; Baigude H; Shan Y
    Glob Chall; 2020 Mar; 4(3):1900075. PubMed ID: 32140254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids.
    Liu M; Guyot-Sionnest P
    J Phys Chem B; 2005 Dec; 109(47):22192-200. PubMed ID: 16853888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size Dependent Cellular Uptake of Rod-like Bionanoparticles with Different Aspect Ratios.
    Liu X; Wu F; Tian Y; Wu M; Zhou Q; Jiang S; Niu Z
    Sci Rep; 2016 Apr; 6():24567. PubMed ID: 27080246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular template approach for evolution of conducting polymer nanostructures: tracing the role of morphology on conductivity and solid state ordering.
    Antony MJ; Jayakannan M
    J Phys Chem B; 2010 Jan; 114(3):1314-24. PubMed ID: 20050618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of nanorods by density gradient centrifugation.
    Xiong B; Cheng J; Qiao Y; Zhou R; He Y; Yeung ES
    J Chromatogr A; 2011 Jun; 1218(25):3823-9. PubMed ID: 21571285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of hybrid CdS-Au colloidal nanostructures.
    Saunders AE; Popov I; Banin U
    J Phys Chem B; 2006 Dec; 110(50):25421-9. PubMed ID: 17165989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation and activity of lysozyme on binding to two types of gold nanorods: a comparative study.
    Moghadam TT; Ranjbar B; Khajeh K
    Int J Biol Macromol; 2012; 51(1-2):91-6. PubMed ID: 22543194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape-Dependent Radiosensitization Effect of Gold Nanostructures in Cancer Radiotherapy: Comparison of Gold Nanoparticles, Nanospikes, and Nanorods.
    Ma N; Wu FG; Zhang X; Jiang YW; Jia HR; Wang HY; Li YH; Liu P; Gu N; Chen Z
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13037-13048. PubMed ID: 28338323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the Cell Entry Dynamic Mechanism of Single Rabies Virus Particle.
    Li S; Pan Y; Teng H; Shan Y; Yang G; Wang H
    Chem Res Chin Univ; 2022; 38(3):838-842. PubMed ID: 35530119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers.
    Kumar J; Wei X; Barrow S; Funston AM; Thomas KG; Mulvaney P
    Phys Chem Chem Phys; 2013 Mar; 15(12):4258-64. PubMed ID: 23439989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular self-assembly into one-dimensional nanostructures.
    Palmer LC; Stupp SI
    Acc Chem Res; 2008 Dec; 41(12):1674-84. PubMed ID: 18754628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High aspect ratio gold nanorods displayed augmented cellular internalization and surface chemistry mediated cytotoxicity.
    DeBrosse MC; Comfort KK; Untener EA; Comfort DA; Hussain SM
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4094-100. PubMed ID: 23910319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods.
    Zijlstra P; Chon JW; Gu M
    Phys Chem Chem Phys; 2009 Jul; 11(28):5915-21. PubMed ID: 19588013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic macroscopic mesocrystalline films produced by oriented assembly of nanorods under magnetic field.
    Takasaki M; Suzuki TS; Oaki Y; Imai H
    Nanoscale; 2018 Dec; 10(47):22161-22165. PubMed ID: 30474681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.