BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 35191695)

  • 21. Orbital pair selection for relative energies in the domain-based local pair natural orbital coupled-cluster method.
    Bensberg M; Neugebauer J
    J Chem Phys; 2022 Aug; 157(6):064102. PubMed ID: 35963732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accurate computed spin-state energetics for Co(iii) complexes: implications for modelling homogeneous catalysis.
    Neale SE; Pantazis DA; Macgregor SA
    Dalton Trans; 2020 May; 49(19):6478-6487. PubMed ID: 32363358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extrapolation to the Limit of a Complete Pair Natural Orbital Space in Local Coupled-Cluster Calculations.
    Altun A; Neese F; Bistoni G
    J Chem Theory Comput; 2020 Oct; 16(10):6142-6149. PubMed ID: 32897712
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Datta D; Saitow M; Sandhöfer B; Neese F
    J Chem Phys; 2020 Nov; 153(20):204101. PubMed ID: 33261496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Linear-Scaling Local Natural Orbital CCSD(T) Approach for Open-Shell Systems: Algorithms, Benchmarks, and Large-Scale Applications.
    Szabó PB; Csóka J; Kállay M; Nagy PR
    J Chem Theory Comput; 2023 Nov; 19(22):8166-8188. PubMed ID: 37921429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scalable Electron Correlation Methods. 7. Local Open-Shell Coupled-Cluster Methods Using Pair Natural Orbitals: PNO-RCCSD and PNO-UCCSD.
    Ma Q; Werner HJ
    J Chem Theory Comput; 2020 May; 16(5):3135-3151. PubMed ID: 32275428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electronic and spin structures of CaMn
    Miyagawa K; Yamanaka S; Isobe H; Shoji M; Kawakami T; Taniguchi M; Okumura M; Yamaguchi K
    Phys Chem Chem Phys; 2020 Dec; 22(46):27191-27205. PubMed ID: 33226053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ionization Energies and Aqueous Redox Potentials of Organic Molecules: Comparison of DFT, Correlated ab Initio Theory and Pair Natural Orbital Approaches.
    Isegawa M; Neese F; Pantazis DA
    J Chem Theory Comput; 2016 May; 12(5):2272-84. PubMed ID: 27065224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct orbital selection within the domain-based local pair natural orbital coupled-cluster method.
    Bensberg M; Neugebauer J
    J Chem Phys; 2021 Dec; 155(22):224102. PubMed ID: 34911318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An efficient and near linear scaling pair natural orbital based local coupled cluster method.
    Riplinger C; Neese F
    J Chem Phys; 2013 Jan; 138(3):034106. PubMed ID: 23343267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring CPS-Extrapolated DLPNO-CCSD(T
    Wappett DA; Goerigk L
    J Phys Chem A; 2024 Jan; 128(1):62-72. PubMed ID: 38124376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DFT, DLPNO-CCSD(T), and NEVPT2 benchmark study of the reaction between ferrocenium and trimethylphosphine.
    Chamkin AA; Serkova ES
    J Comput Chem; 2020 Oct; 41(28):2388-2397. PubMed ID: 32812657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculation of Metallocene Ionization Potentials via Auxiliary Field Quantum Monte Carlo: Toward Benchmark Quantum Chemistry for Transition Metals.
    Rudshteyn B; Weber JL; Coskun D; Devlaminck PA; Zhang S; Reichman DR; Shee J; Friesner RA
    J Chem Theory Comput; 2022 May; 18(5):2845-2862. PubMed ID: 35377642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multilevel Approaches within the Local Pair Natural Orbital Framework.
    Sparta M; Retegan M; Pinski P; Riplinger C; Becker U; Neese F
    J Chem Theory Comput; 2017 Jul; 13(7):3198-3207. PubMed ID: 28590754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface Adsorption Energetics Studied with "Gold Standard" Wave-Function-Based Ab Initio Methods: Small-Molecule Binding to TiO
    Kubas A; Berger D; Oberhofer H; Maganas D; Reuter K; Neese F
    J Phys Chem Lett; 2016 Oct; 7(20):4207-4212. PubMed ID: 27690453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematic High-Accuracy Prediction of Electron Affinities for Biological Quinones.
    Schulz CE; Dutta AK; Izsák R; Pantazis DA
    J Comput Chem; 2018 Nov; 39(29):2439-2451. PubMed ID: 30281169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of experimental alkali metal ion-ligand noncovalent bond strengths with DLPNO-CCSD(T) method.
    Maity B; Minenkov Y; Cavallo L
    J Chem Phys; 2019 Jul; 151(1):014301. PubMed ID: 31272183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HFLD: A Nonempirical London Dispersion-Corrected Hartree-Fock Method for the Quantification and Analysis of Noncovalent Interaction Energies of Large Molecular Systems †.
    Altun A; Neese F; Bistoni G
    J Chem Theory Comput; 2019 Nov; 15(11):5894-5907. PubMed ID: 31538779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Explicitly correlated coupled cluster method for accurate treatment of open-shell molecules with hundreds of atoms.
    Kumar A; Neese F; Valeev EF
    J Chem Phys; 2020 Sep; 153(9):094105. PubMed ID: 32891102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pair natural orbital based implementation of CCSD excitation energies within the framework of linear response theory.
    Frank MS; Hättig C
    J Chem Phys; 2018 Apr; 148(13):134102. PubMed ID: 29626892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.