These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 35191702)
1. Pre-Exascale Computing of Protein-Ligand Binding Free Energies with Open Source Software for Drug Design. Gapsys V; Hahn DF; Tresadern G; Mobley DL; Rampp M; de Groot BL J Chem Inf Model; 2022 Mar; 62(5):1172-1177. PubMed ID: 35191702 [TBL] [Abstract][Full Text] [Related]
2. Protein-Ligand Binding Free Energy Calculations with FEP. Wang L; Chambers J; Abel R Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905 [TBL] [Abstract][Full Text] [Related]
3. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations. Cournia Z; Allen B; Sherman W J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483 [TBL] [Abstract][Full Text] [Related]
4. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery. Wang L; Deng Y; Wu Y; Kim B; LeBard DN; Wandschneider D; Beachy M; Friesner RA; Abel R J Chem Theory Comput; 2017 Jan; 13(1):42-54. PubMed ID: 27933808 [TBL] [Abstract][Full Text] [Related]
5. Advancing Drug Discovery through Enhanced Free Energy Calculations. Abel R; Wang L; Harder ED; Berne BJ; Friesner RA Acc Chem Res; 2017 Jul; 50(7):1625-1632. PubMed ID: 28677954 [TBL] [Abstract][Full Text] [Related]
6. ChemFlow─From 2D Chemical Libraries to Protein-Ligand Binding Free Energies. Barreto Gomes DE; Galentino K; Sisquellas M; Monari L; Bouysset C; Cecchini M J Chem Inf Model; 2023 Jan; 63(2):407-411. PubMed ID: 36603846 [TBL] [Abstract][Full Text] [Related]
7. Accurate Binding Free Energy Predictions in Fragment Optimization. Steinbrecher TB; Dahlgren M; Cappel D; Lin T; Wang L; Krilov G; Abel R; Friesner R; Sherman W J Chem Inf Model; 2015 Nov; 55(11):2411-20. PubMed ID: 26457994 [TBL] [Abstract][Full Text] [Related]
8. Free Energy Calculations for Protein-Ligand Binding Prediction. Jespers W; Åqvist J; Gutiérrez-de-Terán H Methods Mol Biol; 2021; 2266():203-226. PubMed ID: 33759129 [TBL] [Abstract][Full Text] [Related]
9. Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery. Lee TS; Allen BK; Giese TJ; Guo Z; Li P; Lin C; McGee TD; Pearlman DA; Radak BK; Tao Y; Tsai HC; Xu H; Sherman W; York DM J Chem Inf Model; 2020 Nov; 60(11):5595-5623. PubMed ID: 32936637 [TBL] [Abstract][Full Text] [Related]
10. Perspective: Alchemical free energy calculations for drug discovery. Mobley DL; Klimovich PV J Chem Phys; 2012 Dec; 137(23):230901. PubMed ID: 23267463 [TBL] [Abstract][Full Text] [Related]
11. FEW: a workflow tool for free energy calculations of ligand binding. Homeyer N; Gohlke H J Comput Chem; 2013 Apr; 34(11):965-73. PubMed ID: 23288722 [TBL] [Abstract][Full Text] [Related]
12. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015. Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018 [TBL] [Abstract][Full Text] [Related]
13. Drug Design in the Exascale Era: A Perspective from Massively Parallel QM/MM Simulations. Raghavan B; Paulikat M; Ahmad K; Callea L; Rizzi A; Ippoliti E; Mandelli D; Bonati L; De Vivo M; Carloni P J Chem Inf Model; 2023 Jun; 63(12):3647-3658. PubMed ID: 37319347 [TBL] [Abstract][Full Text] [Related]
14. A highly accurate metadynamics-based Dissociation Free Energy method to calculate protein-protein and protein-ligand binding potencies. Wang J; Ishchenko A; Zhang W; Razavi A; Langley D Sci Rep; 2022 Feb; 12(1):2024. PubMed ID: 35132139 [TBL] [Abstract][Full Text] [Related]
15. Understanding the impact of binding free energy and kinetics calculations in modern drug discovery. Adediwura VA; Koirala K; Do HN; Wang J; Miao Y Expert Opin Drug Discov; 2024 Jun; 19(6):671-682. PubMed ID: 38722032 [TBL] [Abstract][Full Text] [Related]
16. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3. He X; Man VH; Ji B; Xie XQ; Wang J J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199 [TBL] [Abstract][Full Text] [Related]
17. Current State of Open Source Force Fields in Protein-Ligand Binding Affinity Predictions. Hahn DF; Gapsys V; de Groot BL; Mobley DL; Tresadern G J Chem Inf Model; 2024 Jul; 64(13):5063-5076. PubMed ID: 38895959 [TBL] [Abstract][Full Text] [Related]
18. Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge. Gallicchio E; Deng N; He P; Wickstrom L; Perryman AL; Santiago DN; Forli S; Olson AJ; Levy RM J Comput Aided Mol Des; 2014 Apr; 28(4):475-90. PubMed ID: 24504704 [TBL] [Abstract][Full Text] [Related]
19. Ligand Gaussian Accelerated Molecular Dynamics 2 (LiGaMD2): Improved Calculations of Ligand Binding Thermodynamics and Kinetics with Closed Protein Pocket. Wang J; Miao Y J Chem Theory Comput; 2023 Feb; 19(3):733-745. PubMed ID: 36706316 [TBL] [Abstract][Full Text] [Related]
20. Active Learning Guided Drug Design Lead Optimization Based on Relative Binding Free Energy Modeling. Gusev F; Gutkin E; Kurnikova MG; Isayev O J Chem Inf Model; 2023 Jan; 63(2):583-594. PubMed ID: 36599125 [No Abstract] [Full Text] [Related] [Next] [New Search]