BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35191778)

  • 21. Archaeal Tubulin-like Proteins Modify Cell Shape in
    Cooper A; Makkay AM; Papke RT
    Genes (Basel); 2023 Sep; 14(10):. PubMed ID: 37895209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Effects of Subcellular Nanograting Geometry on the Formation and Growth of Bacterial Biofilms.
    Lai CQ
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):203-212. PubMed ID: 31804941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudomonas aeruginosa Aggregate Formation in an Alginate Bead Model System Exhibits
    Sønderholm M; Kragh KN; Koren K; Jakobsen TH; Darch SE; Alhede M; Jensen PØ; Whiteley M; Kühl M; Bjarnsholt T
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28258141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Both Pseudomonas aeruginosa and Candida albicans Accumulate Greater Biomass in Dual-Species Biofilms under Flow.
    Kasetty S; Mould DL; Hogan DA; Nadell CD
    mSphere; 2021 Jun; 6(3):e0041621. PubMed ID: 34160236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the effects of aerodynamic and hydrodynamic shear forces on Pseudomonas aeruginosa biofilm growth.
    Zhang Y; Silva DM; Young P; Traini D; Li M; Ong HX; Cheng S
    Biotechnol Bioeng; 2022 Jun; 119(6):1483-1497. PubMed ID: 35274289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms.
    Purevdorj B; Costerton JW; Stoodley P
    Appl Environ Microbiol; 2002 Sep; 68(9):4457-64. PubMed ID: 12200300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of mutation in Pseudomonas aeruginosa biofilm development.
    Conibear TC; Collins SL; Webb JS
    PLoS One; 2009 Jul; 4(7):e6289. PubMed ID: 19606212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An
    Domnin P; Arkhipova A; Petrov S; Sysolyatina E; Parfenov V; Karalkin P; Mukhachev A; Gusarov A; Moisenovich M; Khesuani Y; Ermolaeva S
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Versatile Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Promotes Aggregation through Different Extracellular Exopolysaccharide Interactions.
    Reichhardt C; Jacobs HM; Matwichuk M; Wong C; Wozniak DJ; Parsek MR
    J Bacteriol; 2020 Sep; 202(19):. PubMed ID: 32661078
    [No Abstract]   [Full Text] [Related]  

  • 30. A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa.
    Kuchma SL; Connolly JP; O'Toole GA
    J Bacteriol; 2005 Feb; 187(4):1441-54. PubMed ID: 15687209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation.
    Petrova OE; Schurr JR; Schurr MJ; Sauer K
    Mol Microbiol; 2012 Nov; 86(4):819-35. PubMed ID: 22931250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermoregulation of
    Kim S; Li XH; Hwang HJ; Lee JH
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mucoid Pseudomonas aeruginosa Can Produce Calcium-Gelled Biofilms Independent of the Matrix Components Psl and CdrA.
    Jacobs HM; O'Neal L; Lopatto E; Wozniak DJ; Bjarnsholt T; Parsek MR
    J Bacteriol; 2022 May; 204(5):e0056821. PubMed ID: 35416688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early biofilm and streamer formation is mediated by wall shear stress and surface wettability: A multifactorial microfluidic study.
    Chun ALM; Mosayyebi A; Butt A; Carugo D; Salta M
    Microbiologyopen; 2022 Aug; 11(4):e1310. PubMed ID: 36031954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-Mediated Decreases in Cyclic di-GMP Levels Inhibit Structure Formation in
    Kahl LJ; Price-Whelan A; Dietrich LEP
    J Bacteriol; 2020 Jun; 202(14):. PubMed ID: 32366589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An adaptable microreactor to investigate the influence of interfaces on Pseudomonas aeruginosa biofilm growth.
    Ye Z; Silva DM; Traini D; Young P; Cheng S; Ong HX
    Appl Microbiol Biotechnol; 2022 Feb; 106(3):1067-1077. PubMed ID: 35015140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thin polyester filters as versatile sample substrates for high-pressure freezing of bacterial biofilms, suspended microorganisms and adherent eukaryotic cells.
    Schaudinn C; Tautz C; Laue M
    J Microsc; 2019 May; 274(2):92-101. PubMed ID: 30802953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observations of Shear Stress Effects on Staphylococcus aureus Biofilm Formation.
    Sherman E; Bayles K; Moormeier D; Endres J; Wei T
    mSphere; 2019 Jul; 4(4):. PubMed ID: 31315967
    [No Abstract]   [Full Text] [Related]  

  • 39. The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA.
    Petrova OE; Cherny KE; Sauer K
    J Bacteriol; 2015 Jan; 197(1):174-87. PubMed ID: 25331436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial heterogeneity in biofilm metabolism elicited by local control of phenazine methylation.
    Evans CR; Smiley MK; Asahara Thio S; Wei M; Florek LC; Dayton H; Price-Whelan A; Min W; Dietrich LEP
    Proc Natl Acad Sci U S A; 2023 Oct; 120(43):e2313208120. PubMed ID: 37847735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.