These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35191778)

  • 41. Actinobacillus pleuropneumoniae genes expression in biofilms cultured under static conditions and in a drip-flow apparatus.
    Tremblay YD; Deslandes V; Jacques M
    BMC Genomics; 2013 May; 14():364. PubMed ID: 23725589
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing.
    Matz C; Bergfeld T; Rice SA; Kjelleberg S
    Environ Microbiol; 2004 Mar; 6(3):218-26. PubMed ID: 14871206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa.
    Pamp SJ; Tolker-Nielsen T
    J Bacteriol; 2007 Mar; 189(6):2531-9. PubMed ID: 17220224
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.
    Ma L; Conover M; Lu H; Parsek MR; Bayles K; Wozniak DJ
    PLoS Pathog; 2009 Mar; 5(3):e1000354. PubMed ID: 19325879
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions.
    Mampel J; Spirig T; Weber SS; Haagensen JA; Molin S; Hilbi H
    Appl Environ Microbiol; 2006 Apr; 72(4):2885-95. PubMed ID: 16597995
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biofilm formation by haloarchaea.
    Fröls S; Dyall-Smith M; Pfeifer F
    Environ Microbiol; 2012 Dec; 14(12):3159-74. PubMed ID: 23057712
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phenazine oxidation by a distal electrode modulates biofilm morphogenesis.
    Cornell WC; Zhang Y; Bendebury A; Hartel AJW; Shepard KL; Dietrich LEP
    Biofilm; 2020 Dec; 2():100025. PubMed ID: 33447810
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation.
    Schleheck D; Barraud N; Klebensberger J; Webb JS; McDougald D; Rice SA; Kjelleberg S
    PLoS One; 2009; 4(5):e5513. PubMed ID: 19436737
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Involvement of stress-related genes polB and PA14_46880 in biofilm formation of Pseudomonas aeruginosa.
    Alshalchi SA; Anderson GG
    Infect Immun; 2014 Nov; 82(11):4746-57. PubMed ID: 25156741
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of biofilm-like structures formed by Pseudomonas aeruginosa in a synthetic mucus medium.
    Haley CL; Colmer-Hamood JA; Hamood AN
    BMC Microbiol; 2012 Aug; 12():181. PubMed ID: 22900764
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pseudomonas aeruginosa Leucine Aminopeptidase Influences Early Biofilm Composition and Structure via Vesicle-Associated Antibiofilm Activity.
    Esoda CN; Kuehn MJ
    mBio; 2019 Nov; 10(6):. PubMed ID: 31744920
    [No Abstract]   [Full Text] [Related]  

  • 52. The Phenazine 2-Hydroxy-Phenazine-1-Carboxylic Acid Promotes Extracellular DNA Release and Has Broad Transcriptomic Consequences in Pseudomonas chlororaphis 30-84.
    Wang D; Yu JM; Dorosky RJ; Pierson LS; Pierson EA
    PLoS One; 2016; 11(1):e0148003. PubMed ID: 26812402
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa.
    Diggle SP; Stacey RE; Dodd C; Cámara M; Williams P; Winzer K
    Environ Microbiol; 2006 Jun; 8(6):1095-104. PubMed ID: 16689730
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sodium Salicylate Influences the
    Gerner E; Almqvist S; Thomsen P; Werthén M; Trobos M
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33494399
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An in vitro model of Pseudomonas aeruginosa biofilms on viable airway epithelial cell monolayers.
    Woodworth BA; Tamashiro E; Bhargave G; Cohen NA; Palmer JN
    Am J Rhinol; 2008; 22(3):235-8. PubMed ID: 18588754
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A semi-quantitative approach to assess biofilm formation using wrinkled colony development.
    Ray VA; Morris AR; Visick KL
    J Vis Exp; 2012 Jun; (64):e4035. PubMed ID: 22710417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Space biofilms - An overview of the morphology of
    Flores P; Luo J; Mueller DW; Muecklich F; Zea L
    Biofilm; 2024 Jun; 7():100182. PubMed ID: 38370151
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of Laboratory Culture Media on in vitro Growth, Adhesion, and Biofilm Formation of Pseudomonas aeruginosa and Staphylococcus aureus.
    Wijesinghe G; Dilhari A; Gayani B; Kottegoda N; Samaranayake L; Weerasekera M
    Med Princ Pract; 2019; 28(1):28-35. PubMed ID: 30352435
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Diguanylate Cyclase YfiN of Pseudomonas aeruginosa Regulates Biofilm Maintenance in Response to Peroxide.
    Katharios-Lanwermeyer S; Koval SA; Barrack KE; O'Toole GA
    J Bacteriol; 2022 Jan; 204(1):e0039621. PubMed ID: 34694901
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Escherichia coli O157:H7 requires colonizing partner to adhere and persist in a capillary flow cell.
    Klayman BJ; Volden PA; Stewart PS; Camper AK
    Environ Sci Technol; 2009 Mar; 43(6):2105-11. PubMed ID: 19368221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.