BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 35191837)

  • 1. Epigenetic reprogramming by TET enzymes impacts co-transcriptional R-loops.
    Sabino JC; de Almeida MR; Abreu PL; Ferreira AM; Caldas P; Domingues MM; Santos NC; Azzalin CM; Grosso AR; de Almeida SF
    Elife; 2022 Feb; 11():. PubMed ID: 35191837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Resolution Analysis of 5-Hydroxymethylcytosine by TET-Assisted Bisulfite Sequencing.
    Huang Z; Meng Y; Szabó PE; Kohli RM; Pfeifer GP
    Methods Mol Biol; 2021; 2198():321-331. PubMed ID: 32822042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells.
    Putiri EL; Tiedemann RL; Thompson JJ; Liu C; Ho T; Choi JH; Robertson KD
    Genome Biol; 2014 Jun; 15(6):R81. PubMed ID: 24958354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chromatin remodelling protein LSH/HELLS regulates the amount and distribution of DNA hydroxymethylation in the genome.
    De Dieuleveult M; Bizet M; Colin L; Calonne E; Bachman M; Li C; Stancheva I; Miotto B; Fuks F; Deplus R
    Epigenetics; 2022 Apr; 17(4):422-443. PubMed ID: 33960278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5-Hydroxymethylcytosine-mediated active demethylation is required for mammalian neuronal differentiation and function.
    Stoyanova E; Riad M; Rao A; Heintz N
    Elife; 2021 Dec; 10():. PubMed ID: 34919053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative dynamics of 5-methylcytosine reprogramming and TET family expression during preimplantation mammalian development in mouse and sheep.
    Jafarpour F; Hosseini SM; Ostadhosseini S; Abbasi H; Dalman A; Nasr-Esfahani MH
    Theriogenology; 2017 Feb; 89():86-96. PubMed ID: 28043375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of ten-eleven translocation proteins and 5-hydroxymethylcytosine in hepatocellular carcinoma.
    Wang P; Yan Y; Yu W; Zhang H
    Cell Prolif; 2019 Jul; 52(4):e12626. PubMed ID: 31033072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic distribution and possible functions of DNA hydroxymethylation in the brain.
    Wen L; Tang F
    Genomics; 2014 Nov; 104(5):341-6. PubMed ID: 25205307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.
    He YF; Li BZ; Li Z; Liu P; Wang Y; Tang Q; Ding J; Jia Y; Chen Z; Li L; Sun Y; Li X; Dai Q; Song CX; Zhang K; He C; Xu GL
    Science; 2011 Sep; 333(6047):1303-7. PubMed ID: 21817016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TET enzymes and DNA hydroxymethylation in neural development and function - how critical are they?
    Santiago M; Antunes C; Guedes M; Sousa N; Marques CJ
    Genomics; 2014 Nov; 104(5):334-40. PubMed ID: 25200796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated 5-Hydroxymethylcytosine (5hmC) and Gene Expression Profiles Underpin Gene and Organ-Specific Epigenetic Regulation in Adult Mouse Brain and Liver.
    Lin IH; Chen YF; Hsu MT
    PLoS One; 2017; 12(1):e0170779. PubMed ID: 28125731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into DNA hydroxymethylation in the honeybee from in-depth analyses of TET dioxygenase.
    Wojciechowski M; Rafalski D; Kucharski R; Misztal K; Maleszka J; Bochtler M; Maleszka R
    Open Biol; 2014 Aug; 4(8):. PubMed ID: 25100549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tet family of 5-methylcytosine dioxygenases in mammalian development.
    Zhao H; Chen T
    J Hum Genet; 2013 Jul; 58(7):421-7. PubMed ID: 23719188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of aging on 5-hydroxymethylcytosine in the mouse hippocampus.
    Chen H; Dzitoyeva S; Manev H
    Restor Neurol Neurosci; 2012; 30(3):237-45. PubMed ID: 22426040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-Hydroxymethylcytosine: generation, fate, and genomic distribution.
    Shen L; Zhang Y
    Curr Opin Cell Biol; 2013 Jun; 25(3):289-96. PubMed ID: 23498661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic downregulation of TET3 reduces genome-wide 5hmC levels and promotes glioblastoma tumorigenesis.
    Carella A; Tejedor JR; García MG; Urdinguio RG; Bayón GF; Sierra M; López V; García-Toraño E; Santamarina-Ojeda P; Pérez RF; Bigot T; Mangas C; Corte-Torres MD; Sáenz-de-Santa-María I; Mollejo M; Meléndez B; Astudillo A; Chiara MD; Fernández AF; Fraga MF
    Int J Cancer; 2020 Jan; 146(2):373-387. PubMed ID: 31211412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint single-cell profiling resolves 5mC and 5hmC and reveals their distinct gene regulatory effects.
    Fabyanic EB; Hu P; Qiu Q; Berríos KN; Connolly DR; Wang T; Flournoy J; Zhou Z; Kohli RM; Wu H
    Nat Biotechnol; 2024 Jun; 42(6):960-974. PubMed ID: 37640946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research advances in TET enzyme and its intermediate product 5hmC].
    Wu J; Fang X; Xia X; Zhang M
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2019 Apr; 44(4):449-454. PubMed ID: 31113923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic Modification of Cytosines in Hematopoietic Differentiation and Malignant Transformation.
    An J; Ko M
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in 5hmC level and genomic distribution in aging-related epigenetic drift in human adipose stem cells.
    Borkowska J; Domaszewska-Szostek A; Kołodziej P; Wicik Z; Połosak J; Buyanovskaya O; Charzewski L; Stańczyk M; Noszczyk B; Puzianowska-Kuznicka M
    Epigenomics; 2020 Mar; 12(5):423-437. PubMed ID: 32031421
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.