These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 35191907)
21. Exceedingly Small Magnetic Iron Oxide Nanoparticles for T Yang J; Feng J; Yang S; Xu Y; Shen Z Small; 2023 Dec; 19(49):e2302856. PubMed ID: 37596716 [TBL] [Abstract][Full Text] [Related]
22. Controllable synthesis of exceptionally small-sized superparamagnetic magnetite nanoparticles for ultrasensitive MR imaging and angiography. Dong P; Zhang T; Xiang H; Xu X; Lv Y; Wang Y; Lu C J Mater Chem B; 2021 Jan; 9(4):958-968. PubMed ID: 33300541 [TBL] [Abstract][Full Text] [Related]
23. Manganese-Based Magnetic Layered Double Hydroxide Nanoparticle: A pH-Sensitive and Concurrently Enhanced Xie W; Guo Z; Cao Z; Gao Q; Wang D; Boyer C; Kavallaris M; Sun X; Wang X; Zhao L; Gu Z ACS Biomater Sci Eng; 2019 May; 5(5):2555-2562. PubMed ID: 33405761 [TBL] [Abstract][Full Text] [Related]
24. One-step, room-temperature synthesis of glutathione-capped iron-oxide nanoparticles and their application in in vivo T1-weighted magnetic resonance imaging. Liu CL; Peng YK; Chou SW; Tseng WH; Tseng YJ; Chen HC; Hsiao JK; Chou PT Small; 2014 Oct; 10(19):3962-9. PubMed ID: 25044378 [TBL] [Abstract][Full Text] [Related]
25. Biocompatible Superparamagnetic Europium-Doped Iron Oxide Nanoparticle Clusters as Multifunctional Nanoprobes for Multimodal Zhang T; Wang Z; Xiang H; Xu X; Zou J; Lu C ACS Appl Mater Interfaces; 2021 Jul; 13(29):33850-33861. PubMed ID: 34282885 [TBL] [Abstract][Full Text] [Related]
26. Disruptive chemical doping in a ferritin-based iron oxide nanoparticle to decrease r2 and enhance detection with T1-weighted MRI. Clavijo Jordan MV; Beeman SC; Baldelomar EJ; Bennett KM Contrast Media Mol Imaging; 2014; 9(5):323-32. PubMed ID: 24764110 [TBL] [Abstract][Full Text] [Related]
27. Evaluating size-dependent relaxivity of PEGylated-USPIOs to develop gadolinium-free T1 contrast agents for vascular imaging. Khandhar AP; Wilson GJ; Kaul MG; Salamon J; Jung C; Krishnan KM J Biomed Mater Res A; 2018 Sep; 106(9):2440-2447. PubMed ID: 29664208 [TBL] [Abstract][Full Text] [Related]
28. Facile synthesis of water-soluble Fe Kushwaha P; Chauhan P Magn Reson Imaging; 2023 Jan; 95():50-58. PubMed ID: 36191858 [TBL] [Abstract][Full Text] [Related]
29. Xu S; Wang J; Wei Y; Zhao H; Tao T; Wang H; Wang Z; Du J; Wang H; Qian J; Ma K; Wang J ACS Appl Mater Interfaces; 2020 Dec; 12(51):56701-56711. PubMed ID: 33296181 [TBL] [Abstract][Full Text] [Related]
30. Tumor-targeted Gd-doped mesoporous Fe Zheng S; Jin S; Jiao M; Wang W; Zhou X; Xu J; Wang Y; Dou P; Jin Z; Wu C; Li J; Ge X; Xu K Drug Deliv; 2021 Dec; 28(1):787-799. PubMed ID: 33866915 [TBL] [Abstract][Full Text] [Related]
31. Gram-Scale Preparation of Iron Oxide Nanoparticles with Renal Clearance Properties for Enhanced Liang G; Han J; Hao Q ACS Appl Bio Mater; 2018 Nov; 1(5):1389-1397. PubMed ID: 34996243 [TBL] [Abstract][Full Text] [Related]
32. A new class of cubic SPIONs as a dual-mode T1 and T2 contrast agent for MRI. Alipour A; Soran-Erdem Z; Utkur M; Sharma VK; Algin O; Saritas EU; Demir HV Magn Reson Imaging; 2018 Jun; 49():16-24. PubMed ID: 28958878 [TBL] [Abstract][Full Text] [Related]
33. Magnetic resonance imaging quantification and biodistribution of magnetic nanoparticles using T Lv YB; Chandrasekharan P; Li Y; Liu XL; P Avila J; Yang Y; Chuang KH; Liang XJ; Ding J J Mater Chem B; 2018 Mar; 6(10):1470-1478. PubMed ID: 32254211 [TBL] [Abstract][Full Text] [Related]
34. Encapsulation of Gadolinium Oxide Nanoparticle (Gd Mekuria SL; Debele TA; Tsai HC ACS Appl Mater Interfaces; 2017 Mar; 9(8):6782-6795. PubMed ID: 28164704 [TBL] [Abstract][Full Text] [Related]
35. Photoinduced Superhydrophilicity of Gd-Doped TiO Liu K; Cai Z; Chi X; Kang B; Fu S; Luo X; Lin ZW; Ai H; Gao J; Lin H Nano Lett; 2022 Apr; 22(8):3219-3227. PubMed ID: 35380442 [TBL] [Abstract][Full Text] [Related]
36. One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging. Wang G; Zhang X; Skallberg A; Liu Y; Hu Z; Mei X; Uvdal K Nanoscale; 2014 Mar; 6(5):2953-63. PubMed ID: 24480995 [TBL] [Abstract][Full Text] [Related]
37. Tumor microenvironment responsive Liang M; Zhou W; Zhang H; Zheng J; Lin J; An L; Yang S J Mater Chem B; 2023 May; 11(19):4203-4210. PubMed ID: 37114335 [TBL] [Abstract][Full Text] [Related]
38. Hydroxyl-PEG-Phosphonic Acid-Stabilized Superparamagnetic Manganese Oxide-Doped Iron Oxide Nanoparticles with Synergistic Effects for Dual-Mode MR Imaging. Lu C; Dong P; Pi L; Wang Z; Yuan H; Liang H; Ma D; Chai KY Langmuir; 2019 Jul; 35(29):9474-9482. PubMed ID: 31241339 [TBL] [Abstract][Full Text] [Related]
39. Colloidal polymer-coated Zn-doped iron oxide nanoparticles with high relaxivity and specific absorption rate for efficient magnetic resonance imaging and magnetic hyperthermia. Das P; Salvioni L; Malatesta M; Vurro F; Mannucci S; Gerosa M; Antonietta Rizzuto M; Tullio C; Degrassi A; Colombo M; Ferretti AM; Ponti A; Calderan L; Prosperi D J Colloid Interface Sci; 2020 Nov; 579():186-194. PubMed ID: 32590159 [TBL] [Abstract][Full Text] [Related]
40. Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T1- and T2-weighted magnetic resonance imaging. Hu F; Jia Q; Li Y; Gao M Nanotechnology; 2011 Jun; 22(24):245604. PubMed ID: 21508500 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]