These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 35191907)
41. EDTMP ligand-enhanced water interactions endowing iron oxide nanoparticles with dual-modal MRI contrast ability. Hao L; Wang P; Wu Z; Wang Z; Wang Y; Zhu Y; Xu Z; Guo M; Ji J; Zhang P J Mater Chem B; 2021 Nov; 9(43):9055-9066. PubMed ID: 34673872 [TBL] [Abstract][Full Text] [Related]
42. Rational Design of Magnetic Nanoparticles as T Geraldes CFGC Molecules; 2024 Mar; 29(6):. PubMed ID: 38542988 [TBL] [Abstract][Full Text] [Related]
43. Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis. Saraswathy A; Nazeer SS; Jeevan M; Nimi N; Arumugam S; Harikrishnan VS; Varma PR; Jayasree RS Colloids Surf B Biointerfaces; 2014 May; 117():216-24. PubMed ID: 24646453 [TBL] [Abstract][Full Text] [Related]
44. MR imaging in patients with Crohn disease: value of T2- versus T1-weighted gadolinium-enhanced MR sequences with use of an oral superparamagnetic contrast agent. Maccioni F; Bruni A; Viscido A; Colaiacomo MC; Cocco A; Montesani C; Caprilli R; Marini M Radiology; 2006 Feb; 238(2):517-30. PubMed ID: 16371574 [TBL] [Abstract][Full Text] [Related]
45. Development of Bifunctional Gadolinium-Labeled Superparamagnetic Nanoparticles (Gd-MnMEIO) for In Vivo MR Imaging of the Liver in an Animal Model. Kuo YT; Chen CY; Liu GC; Wang YM PLoS One; 2016; 11(2):e0148695. PubMed ID: 26886558 [TBL] [Abstract][Full Text] [Related]
46. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging. Mishra SK; Kumar BS; Khushu S; Tripathi RP; Gangenahalli G Contrast Media Mol Imaging; 2016 Sep; 11(5):350-361. PubMed ID: 27230705 [TBL] [Abstract][Full Text] [Related]
47. In Vivo Positive Magnetic Resonance Imaging Applications of Poly(methyl vinyl ether-alt-maleic acid)-coated Ultra-small Paramagnetic Gadolinium Oxide Nanoparticles. Ahmad MY; Ahmad MW; Yue H; Ho SL; Park JA; Jung KH; Cha H; Marasini S; Ghazanfari A; Liu S; Tegafaw T; Chae KS; Chang Y; Lee GH Molecules; 2020 Mar; 25(5):. PubMed ID: 32150823 [TBL] [Abstract][Full Text] [Related]
48. Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. Varallyay P; Nesbit G; Muldoon LL; Nixon RR; Delashaw J; Cohen JI; Petrillo A; Rink D; Neuwelt EA AJNR Am J Neuroradiol; 2002 Apr; 23(4):510-9. PubMed ID: 11950637 [TBL] [Abstract][Full Text] [Related]
49. Facile non-hydrothermal synthesis of oligosaccharides coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effect. Huang J; Wang L; Zhong X; Li Y; Yang L; Mao H J Mater Chem B; 2014; (33):. PubMed ID: 25181490 [TBL] [Abstract][Full Text] [Related]
50. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Zhang W; Liu L; Chen H; Hu K; Delahunty I; Gao S; Xie J Theranostics; 2018; 8(9):2521-2548. PubMed ID: 29721097 [TBL] [Abstract][Full Text] [Related]
51. Biomineralized iron oxide-polydopamine hybrid nanodots for contrast-enhanced Wang Z; Wang Y; Wang Y; Wei C; Deng Y; Chen H; Shen J; Ke H J Mater Chem B; 2021 Feb; 9(7):1781-1786. PubMed ID: 33594402 [TBL] [Abstract][Full Text] [Related]