These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 35191907)

  • 41. EDTMP ligand-enhanced water interactions endowing iron oxide nanoparticles with dual-modal MRI contrast ability.
    Hao L; Wang P; Wu Z; Wang Z; Wang Y; Zhu Y; Xu Z; Guo M; Ji J; Zhang P
    J Mater Chem B; 2021 Nov; 9(43):9055-9066. PubMed ID: 34673872
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rational Design of Magnetic Nanoparticles as T
    Geraldes CFGC
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542988
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis.
    Saraswathy A; Nazeer SS; Jeevan M; Nimi N; Arumugam S; Harikrishnan VS; Varma PR; Jayasree RS
    Colloids Surf B Biointerfaces; 2014 May; 117():216-24. PubMed ID: 24646453
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MR imaging in patients with Crohn disease: value of T2- versus T1-weighted gadolinium-enhanced MR sequences with use of an oral superparamagnetic contrast agent.
    Maccioni F; Bruni A; Viscido A; Colaiacomo MC; Cocco A; Montesani C; Caprilli R; Marini M
    Radiology; 2006 Feb; 238(2):517-30. PubMed ID: 16371574
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of Bifunctional Gadolinium-Labeled Superparamagnetic Nanoparticles (Gd-MnMEIO) for In Vivo MR Imaging of the Liver in an Animal Model.
    Kuo YT; Chen CY; Liu GC; Wang YM
    PLoS One; 2016; 11(2):e0148695. PubMed ID: 26886558
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging.
    Mishra SK; Kumar BS; Khushu S; Tripathi RP; Gangenahalli G
    Contrast Media Mol Imaging; 2016 Sep; 11(5):350-361. PubMed ID: 27230705
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In Vivo Positive Magnetic Resonance Imaging Applications of Poly(methyl vinyl ether-alt-maleic acid)-coated Ultra-small Paramagnetic Gadolinium Oxide Nanoparticles.
    Ahmad MY; Ahmad MW; Yue H; Ho SL; Park JA; Jung KH; Cha H; Marasini S; Ghazanfari A; Liu S; Tegafaw T; Chae KS; Chang Y; Lee GH
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32150823
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors.
    Varallyay P; Nesbit G; Muldoon LL; Nixon RR; Delashaw J; Cohen JI; Petrillo A; Rink D; Neuwelt EA
    AJNR Am J Neuroradiol; 2002 Apr; 23(4):510-9. PubMed ID: 11950637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Facile non-hydrothermal synthesis of oligosaccharides coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effect.
    Huang J; Wang L; Zhong X; Li Y; Yang L; Mao H
    J Mater Chem B; 2014; (33):. PubMed ID: 25181490
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents.
    Zhang W; Liu L; Chen H; Hu K; Delahunty I; Gao S; Xie J
    Theranostics; 2018; 8(9):2521-2548. PubMed ID: 29721097
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomineralized iron oxide-polydopamine hybrid nanodots for contrast-enhanced
    Wang Z; Wang Y; Wang Y; Wei C; Deng Y; Chen H; Shen J; Ke H
    J Mater Chem B; 2021 Feb; 9(7):1781-1786. PubMed ID: 33594402
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnetic, biocompatible FeCO
    Thangudu S; Yu CC; Lee CL; Liao MC; Su CH
    J Nanobiotechnology; 2022 Mar; 20(1):157. PubMed ID: 35337331
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging.
    Wang YX; Hussain SM; Krestin GP
    Eur Radiol; 2001; 11(11):2319-31. PubMed ID: 11702180
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection and characterization of focal liver lesions using superparamagnetic iron oxide-enhanced magnetic resonance imaging: comparison between ferumoxides-enhanced T1-weighted imaging and delayed-phase gadolinium-enhanced T1-weighted imaging.
    Takahama K; Amano Y; Hayashi H; Ishihara M; Kumazaki T
    Abdom Imaging; 2003; 28(4):525-30. PubMed ID: 14580096
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A cation exchange strategy to construct a targeting nanoprobe for enhanced
    Chen S; Zhang Q; Sun H; Zheng Y; Chen Q; Luo Y; Chen H; Zhou Q
    J Mater Chem B; 2020 Sep; 8(37):8519-8526. PubMed ID: 32812623
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Label-Free Iron Oxide Nanoparticles as Multimodal Contrast Agents in Cells Using Multi-Photon and Magnetic Resonance Imaging.
    Reynders H; Van Zundert I; Silva R; Carlier B; Deschaume O; Bartic C; Rocha S; Basov S; Van Bael MJ; Himmelreich U; Verbiest T; Zamora A
    Int J Nanomedicine; 2021; 16():8375-8389. PubMed ID: 35002233
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-Confirming Magnetosomes for Tumor-Targeted T
    Jiang G; Fan D; Tian J; Xiang Z; Fang Q
    Adv Healthc Mater; 2022 Jul; 11(14):e2200841. PubMed ID: 35579102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control.
    Huang G; Li H; Chen J; Zhao Z; Yang L; Chi X; Chen Z; Wang X; Gao J
    Nanoscale; 2014 Sep; 6(17):10404-12. PubMed ID: 25079966
    [TBL] [Abstract][Full Text] [