These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Plant growth-promoting rhizobacterium Bacillus cereus AR156 induced systemic resistance against multiple pathogens by priming of camalexin synthesis. Li ZJ; Tang SY; Gao HS; Ren JY; Xu PL; Dong WP; Zheng Y; Yang W; Yu YY; Guo JH; Luo YM; Niu DD; Jiang CH Plant Cell Environ; 2024 Jan; 47(1):337-353. PubMed ID: 37775913 [TBL] [Abstract][Full Text] [Related]
4. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733 [TBL] [Abstract][Full Text] [Related]
5. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Wang L; Liu W; Wang Y Plant Sci; 2020 Apr; 293():110421. PubMed ID: 32081269 [TBL] [Abstract][Full Text] [Related]
6. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Li D; Zhang H; Song Q; Wang L; Liu S; Hong Y; Huang L; Song F BMC Plant Biol; 2015 Jun; 15():143. PubMed ID: 26070456 [TBL] [Abstract][Full Text] [Related]
7. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000. Wang M; Zhu Y; Han R; Yin W; Guo C; Li Z; Wang X Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29494485 [TBL] [Abstract][Full Text] [Related]
8. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Ferrari S; Plotnikova JM; De Lorenzo G; Ausubel FM Plant J; 2003 Jul; 35(2):193-205. PubMed ID: 12848825 [TBL] [Abstract][Full Text] [Related]
9. Rhizosphere-associated Pseudomonas induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens. Haney CH; Wiesmann CL; Shapiro LR; Melnyk RA; O'Sullivan LR; Khorasani S; Xiao L; Han J; Bush J; Carrillo J; Pierce NE; Ausubel FM Mol Ecol; 2018 Apr; 27(8):1833-1847. PubMed ID: 29087012 [TBL] [Abstract][Full Text] [Related]
10. Vitamin B6 contributes to disease resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea in Arabidopsis thaliana. Zhang Y; Jin X; Ouyang Z; Li X; Liu B; Huang L; Hong Y; Zhang H; Song F; Li D J Plant Physiol; 2015 Mar; 175():21-5. PubMed ID: 25460872 [TBL] [Abstract][Full Text] [Related]
11. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Schön M; Töller A; Diezel C; Roth C; Westphal L; Wiermer M; Somssich IE Mol Plant Microbe Interact; 2013 Jul; 26(7):758-67. PubMed ID: 23617415 [TBL] [Abstract][Full Text] [Related]
12. Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv. tomato DC3000 by suppressing miR472 and activating CNLs-mediated basal immunity in Arabidopsis. Jiang C; Fan Z; Li Z; Niu D; Li Y; Zheng M; Wang Q; Jin H; Guo J Mol Plant Pathol; 2020 Jun; 21(6):854-870. PubMed ID: 32227587 [TBL] [Abstract][Full Text] [Related]
13. Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic acid-dependent as well as -independent mechanisms. Raacke IC; von Rad U; Mueller MJ; Berger S Mol Plant Microbe Interact; 2006 Oct; 19(10):1138-46. PubMed ID: 17022178 [TBL] [Abstract][Full Text] [Related]
14. An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae. Camañes G; Scalschi L; Vicedo B; González-Bosch C; García-Agustín P Plant J; 2015 Oct; 84(1):125-39. PubMed ID: 26270176 [TBL] [Abstract][Full Text] [Related]
15. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Pozo MJ; Van Der Ent S; Van Loon LC; Pieterse CMJ New Phytol; 2008; 180(2):511-523. PubMed ID: 18657213 [TBL] [Abstract][Full Text] [Related]
16. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. Veronese P; Chen X; Bluhm B; Salmeron J; Dietrich R; Mengiste T Plant J; 2004 Nov; 40(4):558-74. PubMed ID: 15500471 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Ton J; De Vos M; Robben C; Buchala A; Métraux JP; Van Loon LC; Pieterse CM Plant J; 2002 Jan; 29(1):11-21. PubMed ID: 12060223 [TBL] [Abstract][Full Text] [Related]
18. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Zhang H; Yan M; Deng R; Song F; Jiang M Gene; 2020 Feb; 727():144245. PubMed ID: 31715302 [TBL] [Abstract][Full Text] [Related]
19. Spermine deficiency shifts the balance between jasmonic acid and salicylic acid-mediated defence responses in Arabidopsis. Zhang C; Atanasov KE; Murillo E; Vives-Peris V; Zhao J; Deng C; Gómez-Cadenas A; Alcázar R Plant Cell Environ; 2023 Dec; 46(12):3949-3970. PubMed ID: 37651604 [TBL] [Abstract][Full Text] [Related]
20. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. Chassot C; Buchala A; Schoonbeek HJ; Métraux JP; Lamotte O Plant J; 2008 Aug; 55(4):555-67. PubMed ID: 18452590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]