BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35192018)

  • 1. Enhancing the sensitivity of water toxicity detection based on suspended Shewanella oneidensis MR-1 by reversing extracellular electron transfer direction.
    Zang Y; Zhao H; Cao B; Xie B; Yi Y; Liu H
    Anal Bioanal Chem; 2022 Apr; 414(9):3057-3066. PubMed ID: 35192018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-site determination of water toxicity based on freeze-dried electrochemically active bacteria.
    Zang Y; Cao B; Zhao H; Xie B; Ge Y; Yi Y; Liu H
    Sci Total Environ; 2023 Apr; 867():161432. PubMed ID: 36623651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway.
    Yang Y; Ding Y; Hu Y; Cao B; Rice SA; Kjelleberg S; Song H
    ACS Synth Biol; 2015 Jul; 4(7):815-23. PubMed ID: 25621739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms regulating the catabolic and electrochemical activities of Shewanella oneidensis MR-1.
    Kouzuma A
    Biosci Biotechnol Biochem; 2021 Jun; 85(7):1572-1581. PubMed ID: 33998649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual detection of biochemical oxygen demand and nitrate in water based on bidirectional Shewanella loihica electron transfer.
    Yi Y; Zhao T; Xie B; Zang Y; Liu H
    Bioresour Technol; 2020 Aug; 309():123402. PubMed ID: 32361616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Extracellular Electron Transfer of Shewanella oneidensis MR-1 through Coupling Improved Flavin Synthesis and Metal-Reducing Conduit for Pollutant Degradation.
    Min D; Cheng L; Zhang F; Huang XN; Li DB; Liu DF; Lau TC; Mu Y; Yu HQ
    Environ Sci Technol; 2017 May; 51(9):5082-5089. PubMed ID: 28414427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemiluminescence for the identification of electrochemically active bacteria.
    You LX; Chen NJ; Wang L; Chen J; Qin SF; Rensing C; Lin ZY; Zhou SG
    Biosens Bioelectron; 2019 Jul; 137():222-228. PubMed ID: 31121459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing Microbial Extracellular Respiration Ability Using Riboflavin.
    Zhang F; Wu JH; Yu HQ
    Anal Chem; 2020 Aug; 92(15):10606-10612. PubMed ID: 32633502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing a population-state decision system for intelligently reprogramming extracellular electron transfer in
    Li FH; Tang Q; Fan YY; Li Y; Li J; Wu JH; Luo CF; Sun H; Li WW; Yu HQ
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):23001-23010. PubMed ID: 32855303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoting bidirectional extracellular electron transfer of Shewanella oneidensis MR-1 for hexavalent chromium reduction via elevating intracellular cAMP level.
    Cheng ZH; Xiong JR; Min D; Cheng L; Liu DF; Li WW; Jin F; Yang M; Yu HQ
    Biotechnol Bioeng; 2020 May; 117(5):1294-1303. PubMed ID: 32048726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core/Shell Bacterial Cables: A One-Dimensional Platform for Probing Microbial Electron Transfer.
    Hsu L; Deng P; Zhang Y; Jiang X
    Nano Lett; 2018 Jul; 18(7):4606-4610. PubMed ID: 29923733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and applications of bidirectional extracellular electron transfer of
    Zang Y; Cao B; Zhao H; Xie B; Ge Y; Liu H; Yi Y
    Environ Sci Process Impacts; 2023 Dec; 25(12):1863-1877. PubMed ID: 37787043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular engineering to increase intracellular NAD(H/
    Li F; Li YX; Cao YX; Wang L; Liu CG; Shi L; Song H
    Nat Commun; 2018 Sep; 9(1):3637. PubMed ID: 30194293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular pollutant degradation feedback regulates intracellular electron transfer process of exoelectrogens: Strategy and mechanism.
    Huang J; Cai XL; Peng JR; Fan YY; Xiao X
    Sci Total Environ; 2022 Dec; 853():158630. PubMed ID: 36084783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of oxygen on the per-cell extracellular electron transfer rate of Shewanella oneidensis MR-1 explored in bioelectrochemical systems.
    Lu M; Chan S; Babanova S; Bretschger O
    Biotechnol Bioeng; 2017 Jan; 114(1):96-105. PubMed ID: 27399911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and application.
    Jiang Y; Zeng RJ
    Bioresour Technol; 2019 Jan; 271():439-448. PubMed ID: 30292689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergent Nrf Family Proteins and MtrCAB Homologs Facilitate Extracellular Electron Transfer in Aeromonas hydrophila.
    Conley BE; Intile PJ; Bond DR; Gralnick JA
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of 3,3',4',5-tetrachlorosalicylanilide in regulating extracellular electron transfer of Shewanella oneidensis MR-1.
    Wang YP; Yu SS; Zhang HL; Li WW; Cheng YY; Yu HQ
    Sci Rep; 2015 Jan; 5():7991. PubMed ID: 25612888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for Horizontal and Vertical Transmission of Mtr-Mediated Extracellular Electron Transfer among the
    Baker IR; Conley BE; Gralnick JA; Girguis PR
    mBio; 2021 Feb; 13(1):e0290421. PubMed ID: 35100867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.